Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fsum Structured version   Visualization version   GIF version

Theorem sge0fsum 43815
Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fsum.x (𝜑𝑋 ∈ Fin)
sge0fsum.f (𝜑𝐹:𝑋⟶(0[,)+∞))
Assertion
Ref Expression
sge0fsum (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥

Proof of Theorem sge0fsum
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0fsum.x . . 3 (𝜑𝑋 ∈ Fin)
2 sge0fsum.f . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
32fge0icoicc 43793 . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
41, 3sge0xrcl 43813 . 2 (𝜑 → (Σ^𝐹) ∈ ℝ*)
5 rge0ssre 13117 . . . . 5 (0[,)+∞) ⊆ ℝ
62ffvelrnda 6943 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,)+∞))
75, 6sselid 3915 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
81, 7fsumrecl 15374 . . 3 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ)
98rexrd 10956 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*)
101, 2sge0reval 43800 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ))
11 simpr 484 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)))
12 vex 3426 . . . . . . . . 9 𝑤 ∈ V
1312a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ V)
14 eqid 2738 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))
1514elrnmpt 5854 . . . . . . . 8 (𝑤 ∈ V → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1711, 16mpbid 231 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥))
18 simp3 1136 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 = Σ𝑥𝑦 (𝐹𝑥))
191adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ Fin)
202fge0npnf 43795 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ +∞ ∈ ran 𝐹)
213, 20fge0iccre 43802 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℝ)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶ℝ)
2322adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶ℝ)
24 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝑥𝑋)
2523, 24ffvelrnd 6944 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
26 0xr 10953 . . . . . . . . . . . . . 14 0 ∈ ℝ*
2726a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ∈ ℝ*)
28 pnfxr 10960 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → +∞ ∈ ℝ*)
303adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
3130ffvelrnda 6943 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (0[,]+∞))
32 iccgelb 13064 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑥))
3327, 29, 31, 32syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ≤ (𝐹𝑥))
34 elinel1 4125 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ 𝒫 𝑋)
35 elpwi 4539 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
3736adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
3819, 25, 33, 37fsumless 15436 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
39383adant3 1130 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
4018, 39eqbrtrd 5092 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
41403exp 1117 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))))
4241rexlimdv 3211 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4342adantr 480 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4417, 43mpd 15 . . . . 5 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
4544ralrimiva 3107 . . . 4 (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
46 elinel2 4126 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
4746adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
4822adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝐹:𝑋⟶ℝ)
4937sselda 3917 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
5048, 49ffvelrnd 6944 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ)
5147, 50fsumrecl 15374 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ)
5251rexrd 10956 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5352ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5414rnmptss 6978 . . . . . 6 (∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ* → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
5553, 54syl 17 . . . . 5 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
56 supxrleub 12989 . . . . 5 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ* ∧ Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*) → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5755, 9, 56syl2anc 583 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5845, 57mpbird 256 . . 3 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥))
5910, 58eqbrtrd 5092 . 2 (𝜑 → (Σ^𝐹) ≤ Σ𝑥𝑋 (𝐹𝑥))
60 ssid 3939 . . . 4 𝑋𝑋
6160a1i 11 . . 3 (𝜑𝑋𝑋)
621, 2, 61, 1fsumlesge0 43805 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ≤ (Σ^𝐹))
634, 9, 59, 62xrletrid 12818 1 (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,)cico 13010  [,]cicc 13011  Σcsu 15325  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  sge0fsummpt  43818  sge0sup  43819  sge0ltfirp  43828  sge0le  43835  sge0iunmptlemfi  43841  sge0ltfirpmpt2  43854  sge0fsummptf  43864  omeiunltfirp  43947
  Copyright terms: Public domain W3C validator