Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fsum Structured version   Visualization version   GIF version

Theorem sge0fsum 43925
Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fsum.x (𝜑𝑋 ∈ Fin)
sge0fsum.f (𝜑𝐹:𝑋⟶(0[,)+∞))
Assertion
Ref Expression
sge0fsum (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥

Proof of Theorem sge0fsum
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0fsum.x . . 3 (𝜑𝑋 ∈ Fin)
2 sge0fsum.f . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
32fge0icoicc 43903 . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
41, 3sge0xrcl 43923 . 2 (𝜑 → (Σ^𝐹) ∈ ℝ*)
5 rge0ssre 13188 . . . . 5 (0[,)+∞) ⊆ ℝ
62ffvelrnda 6961 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,)+∞))
75, 6sselid 3919 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
81, 7fsumrecl 15446 . . 3 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ)
98rexrd 11025 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*)
101, 2sge0reval 43910 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ))
11 simpr 485 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)))
12 vex 3436 . . . . . . . . 9 𝑤 ∈ V
1312a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ V)
14 eqid 2738 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))
1514elrnmpt 5865 . . . . . . . 8 (𝑤 ∈ V → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1711, 16mpbid 231 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥))
18 simp3 1137 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 = Σ𝑥𝑦 (𝐹𝑥))
191adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ Fin)
202fge0npnf 43905 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ +∞ ∈ ran 𝐹)
213, 20fge0iccre 43912 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℝ)
2221adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶ℝ)
2322adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶ℝ)
24 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝑥𝑋)
2523, 24ffvelrnd 6962 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
26 0xr 11022 . . . . . . . . . . . . . 14 0 ∈ ℝ*
2726a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ∈ ℝ*)
28 pnfxr 11029 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → +∞ ∈ ℝ*)
303adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
3130ffvelrnda 6961 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (0[,]+∞))
32 iccgelb 13135 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑥))
3327, 29, 31, 32syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ≤ (𝐹𝑥))
34 elinel1 4129 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ 𝒫 𝑋)
35 elpwi 4542 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
3736adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
3819, 25, 33, 37fsumless 15508 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
39383adant3 1131 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
4018, 39eqbrtrd 5096 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
41403exp 1118 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))))
4241rexlimdv 3212 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4342adantr 481 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4417, 43mpd 15 . . . . 5 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
4544ralrimiva 3103 . . . 4 (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
46 elinel2 4130 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
4746adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
4822adantr 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝐹:𝑋⟶ℝ)
4937sselda 3921 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
5048, 49ffvelrnd 6962 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ)
5147, 50fsumrecl 15446 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ)
5251rexrd 11025 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5352ralrimiva 3103 . . . . . 6 (𝜑 → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5414rnmptss 6996 . . . . . 6 (∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ* → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
5553, 54syl 17 . . . . 5 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
56 supxrleub 13060 . . . . 5 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ* ∧ Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*) → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5755, 9, 56syl2anc 584 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5845, 57mpbird 256 . . 3 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥))
5910, 58eqbrtrd 5096 . 2 (𝜑 → (Σ^𝐹) ≤ Σ𝑥𝑋 (𝐹𝑥))
60 ssid 3943 . . . 4 𝑋𝑋
6160a1i 11 . . 3 (𝜑𝑋𝑋)
621, 2, 61, 1fsumlesge0 43915 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ≤ (Σ^𝐹))
634, 9, 59, 62xrletrid 12889 1 (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  supcsup 9199  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  [,]cicc 13082  Σcsu 15397  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901
This theorem is referenced by:  sge0fsummpt  43928  sge0sup  43929  sge0ltfirp  43938  sge0le  43945  sge0iunmptlemfi  43951  sge0ltfirpmpt2  43964  sge0fsummptf  43974  omeiunltfirp  44057
  Copyright terms: Public domain W3C validator