Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fsum Structured version   Visualization version   GIF version

Theorem sge0fsum 46343
Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fsum.x (𝜑𝑋 ∈ Fin)
sge0fsum.f (𝜑𝐹:𝑋⟶(0[,)+∞))
Assertion
Ref Expression
sge0fsum (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥

Proof of Theorem sge0fsum
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0fsum.x . . 3 (𝜑𝑋 ∈ Fin)
2 sge0fsum.f . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
32fge0icoicc 46321 . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
41, 3sge0xrcl 46341 . 2 (𝜑 → (Σ^𝐹) ∈ ℝ*)
5 rge0ssre 13493 . . . . 5 (0[,)+∞) ⊆ ℝ
62ffvelcdmda 7104 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,)+∞))
75, 6sselid 3993 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
81, 7fsumrecl 15767 . . 3 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ)
98rexrd 11309 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*)
101, 2sge0reval 46328 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ))
11 simpr 484 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)))
12 vex 3482 . . . . . . . . 9 𝑤 ∈ V
1312a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ V)
14 eqid 2735 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))
1514elrnmpt 5972 . . . . . . . 8 (𝑤 ∈ V → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1711, 16mpbid 232 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥))
18 simp3 1137 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 = Σ𝑥𝑦 (𝐹𝑥))
191adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ Fin)
202fge0npnf 46323 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ +∞ ∈ ran 𝐹)
213, 20fge0iccre 46330 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℝ)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶ℝ)
2322adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶ℝ)
24 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝑥𝑋)
2523, 24ffvelcdmd 7105 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
26 0xr 11306 . . . . . . . . . . . . . 14 0 ∈ ℝ*
2726a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ∈ ℝ*)
28 pnfxr 11313 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → +∞ ∈ ℝ*)
303adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
3130ffvelcdmda 7104 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (0[,]+∞))
32 iccgelb 13440 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑥))
3327, 29, 31, 32syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ≤ (𝐹𝑥))
34 elinel1 4211 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ 𝒫 𝑋)
35 elpwi 4612 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
3736adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
3819, 25, 33, 37fsumless 15829 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
39383adant3 1131 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
4018, 39eqbrtrd 5170 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
41403exp 1118 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))))
4241rexlimdv 3151 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4342adantr 480 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4417, 43mpd 15 . . . . 5 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
4544ralrimiva 3144 . . . 4 (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
46 elinel2 4212 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
4746adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
4822adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝐹:𝑋⟶ℝ)
4937sselda 3995 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
5048, 49ffvelcdmd 7105 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ)
5147, 50fsumrecl 15767 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ)
5251rexrd 11309 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5352ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5414rnmptss 7143 . . . . . 6 (∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ* → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
5553, 54syl 17 . . . . 5 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
56 supxrleub 13365 . . . . 5 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ* ∧ Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*) → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5755, 9, 56syl2anc 584 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5845, 57mpbird 257 . . 3 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥))
5910, 58eqbrtrd 5170 . 2 (𝜑 → (Σ^𝐹) ≤ Σ𝑥𝑋 (𝐹𝑥))
60 ssid 4018 . . . 4 𝑋𝑋
6160a1i 11 . . 3 (𝜑𝑋𝑋)
621, 2, 61, 1fsumlesge0 46333 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ≤ (Σ^𝐹))
634, 9, 59, 62xrletrid 13194 1 (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  supcsup 9478  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  [,)cico 13386  [,]cicc 13387  Σcsu 15719  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319
This theorem is referenced by:  sge0fsummpt  46346  sge0sup  46347  sge0ltfirp  46356  sge0le  46363  sge0iunmptlemfi  46369  sge0ltfirpmpt2  46382  sge0fsummptf  46392  omeiunltfirp  46475
  Copyright terms: Public domain W3C validator