Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fsum Structured version   Visualization version   GIF version

Theorem sge0fsum 41347
Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fsum.x (𝜑𝑋 ∈ Fin)
sge0fsum.f (𝜑𝐹:𝑋⟶(0[,)+∞))
Assertion
Ref Expression
sge0fsum (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥

Proof of Theorem sge0fsum
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0fsum.x . . 3 (𝜑𝑋 ∈ Fin)
2 sge0fsum.f . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
32fge0icoicc 41325 . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
41, 3sge0xrcl 41345 . 2 (𝜑 → (Σ^𝐹) ∈ ℝ*)
5 rge0ssre 12531 . . . . 5 (0[,)+∞) ⊆ ℝ
62ffvelrnda 6585 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,)+∞))
75, 6sseldi 3796 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
81, 7fsumrecl 14806 . . 3 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ)
98rexrd 10378 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*)
101, 2sge0reval 41332 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ))
11 simpr 478 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)))
12 vex 3388 . . . . . . . . 9 𝑤 ∈ V
1312a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ V)
14 eqid 2799 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))
1514elrnmpt 5576 . . . . . . . 8 (𝑤 ∈ V → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1711, 16mpbid 224 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥))
18 simp3 1169 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 = Σ𝑥𝑦 (𝐹𝑥))
191adantr 473 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ Fin)
202fge0npnf 41327 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ +∞ ∈ ran 𝐹)
213, 20fge0iccre 41334 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℝ)
2221adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶ℝ)
2322adantr 473 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶ℝ)
24 simpr 478 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝑥𝑋)
2523, 24ffvelrnd 6586 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
26 0xr 10375 . . . . . . . . . . . . . 14 0 ∈ ℝ*
2726a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ∈ ℝ*)
28 pnfxr 10382 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → +∞ ∈ ℝ*)
303adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
3130ffvelrnda 6585 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (0[,]+∞))
32 iccgelb 12479 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑥))
3327, 29, 31, 32syl3anc 1491 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ≤ (𝐹𝑥))
34 elinel1 3997 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ 𝒫 𝑋)
35 elpwi 4359 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
3736adantl 474 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
3819, 25, 33, 37fsumless 14866 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
39383adant3 1163 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
4018, 39eqbrtrd 4865 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
41403exp 1149 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))))
4241rexlimdv 3211 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4342adantr 473 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4417, 43mpd 15 . . . . 5 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
4544ralrimiva 3147 . . . 4 (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
46 elinel2 3998 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
4746adantl 474 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
4822adantr 473 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝐹:𝑋⟶ℝ)
4937sselda 3798 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
5048, 49ffvelrnd 6586 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ)
5147, 50fsumrecl 14806 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ)
5251rexrd 10378 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5352ralrimiva 3147 . . . . . 6 (𝜑 → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5414rnmptss 6618 . . . . . 6 (∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ* → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
5553, 54syl 17 . . . . 5 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
56 supxrleub 12405 . . . . 5 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ* ∧ Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*) → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5755, 9, 56syl2anc 580 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5845, 57mpbird 249 . . 3 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥))
5910, 58eqbrtrd 4865 . 2 (𝜑 → (Σ^𝐹) ≤ Σ𝑥𝑋 (𝐹𝑥))
60 ssid 3819 . . . 4 𝑋𝑋
6160a1i 11 . . 3 (𝜑𝑋𝑋)
621, 2, 61, 1fsumlesge0 41337 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ≤ (Σ^𝐹))
634, 9, 59, 62xrletrid 12235 1 (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  wrex 3090  Vcvv 3385  cin 3768  wss 3769  𝒫 cpw 4349   class class class wbr 4843  cmpt 4922  ran crn 5313  wf 6097  cfv 6101  (class class class)co 6878  Fincfn 8195  supcsup 8588  cr 10223  0cc0 10224  +∞cpnf 10360  *cxr 10362   < clt 10363  cle 10364  [,)cico 12426  [,]cicc 12427  Σcsu 14757  Σ^csumge0 41322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-sum 14758  df-sumge0 41323
This theorem is referenced by:  sge0fsummpt  41350  sge0sup  41351  sge0ltfirp  41360  sge0le  41367  sge0iunmptlemfi  41373  sge0ltfirpmpt2  41386  sge0fsummptf  41396  omeiunltfirp  41479
  Copyright terms: Public domain W3C validator