Step | Hyp | Ref
| Expression |
1 | | sge0fsum.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
2 | | sge0fsum.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
3 | 2 | fge0icoicc 43903 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
4 | 1, 3 | sge0xrcl 43923 |
. 2
⊢ (𝜑 →
(Σ^‘𝐹) ∈
ℝ*) |
5 | | rge0ssre 13188 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℝ |
6 | 2 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
7 | 5, 6 | sselid 3919 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
8 | 1, 7 | fsumrecl 15446 |
. . 3
⊢ (𝜑 → Σ𝑥 ∈ 𝑋 (𝐹‘𝑥) ∈ ℝ) |
9 | 8 | rexrd 11025 |
. 2
⊢ (𝜑 → Σ𝑥 ∈ 𝑋 (𝐹‘𝑥) ∈
ℝ*) |
10 | 1, 2 | sge0reval 43910 |
. . 3
⊢ (𝜑 →
(Σ^‘𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)), ℝ*, <
)) |
11 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) → 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) |
12 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
13 | 12 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) → 𝑤 ∈ V) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) |
15 | 14 | elrnmpt 5865 |
. . . . . . . 8
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) |
16 | 13, 15 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) |
17 | 11, 16 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) |
18 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) → 𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) |
19 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ Fin) |
20 | 2 | fge0npnf 43905 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ +∞ ∈ ran
𝐹) |
21 | 3, 20 | fge0iccre 43912 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
22 | 21 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶ℝ) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℝ) |
24 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
25 | 23, 24 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
26 | | 0xr 11022 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
27 | 26 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑋) → 0 ∈
ℝ*) |
28 | | pnfxr 11029 |
. . . . . . . . . . . . . 14
⊢ +∞
∈ ℝ* |
29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑋) → +∞ ∈
ℝ*) |
30 | 3 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞)) |
31 | 30 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
32 | | iccgelb 13135 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝐹‘𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹‘𝑥)) |
33 | 27, 29, 31, 32 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝐹‘𝑥)) |
34 | | elinel1 4129 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ 𝒫 𝑋) |
35 | | elpwi 4542 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ⊆ 𝑋) |
37 | 36 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ⊆ 𝑋) |
38 | 19, 25, 33, 37 | fsumless 15508 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) |
39 | 38 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) → Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) |
40 | 18, 39 | eqbrtrd 5096 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) → 𝑤 ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) |
41 | 40 | 3exp 1118 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) → 𝑤 ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)))) |
42 | 41 | rexlimdv 3212 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) → 𝑤 ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥))) |
43 | 42 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) → 𝑤 ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥))) |
44 | 17, 43 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))) → 𝑤 ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) |
45 | 44 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))𝑤 ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) |
46 | | elinel2 4130 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin) |
47 | 46 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin) |
48 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝐹:𝑋⟶ℝ) |
49 | 37 | sselda 3921 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑋) |
50 | 48, 49 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥 ∈ 𝑦) → (𝐹‘𝑥) ∈ ℝ) |
51 | 47, 50 | fsumrecl 15446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) ∈ ℝ) |
52 | 51 | rexrd 11025 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) ∈
ℝ*) |
53 | 52 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) ∈
ℝ*) |
54 | 14 | rnmptss 6996 |
. . . . . 6
⊢
(∀𝑦 ∈
(𝒫 𝑋 ∩
Fin)Σ𝑥 ∈ 𝑦 (𝐹‘𝑥) ∈ ℝ* → ran
(𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) ⊆
ℝ*) |
55 | 53, 54 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) ⊆
ℝ*) |
56 | | supxrleub 13060 |
. . . . 5
⊢ ((ran
(𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)) ⊆ ℝ* ∧
Σ𝑥 ∈ 𝑋 (𝐹‘𝑥) ∈ ℝ*) → (sup(ran
(𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)), ℝ*, < ) ≤
Σ𝑥 ∈ 𝑋 (𝐹‘𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))𝑤 ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥))) |
57 | 55, 9, 56 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)), ℝ*, < ) ≤
Σ𝑥 ∈ 𝑋 (𝐹‘𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥))𝑤 ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥))) |
58 | 45, 57 | mpbird 256 |
. . 3
⊢ (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 (𝐹‘𝑥)), ℝ*, < ) ≤
Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) |
59 | 10, 58 | eqbrtrd 5096 |
. 2
⊢ (𝜑 →
(Σ^‘𝐹) ≤ Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) |
60 | | ssid 3943 |
. . . 4
⊢ 𝑋 ⊆ 𝑋 |
61 | 60 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑋 ⊆ 𝑋) |
62 | 1, 2, 61, 1 | fsumlesge0 43915 |
. 2
⊢ (𝜑 → Σ𝑥 ∈ 𝑋 (𝐹‘𝑥) ≤
(Σ^‘𝐹)) |
63 | 4, 9, 59, 62 | xrletrid 12889 |
1
⊢ (𝜑 →
(Σ^‘𝐹) = Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) |