Step | Hyp | Ref
| Expression |
1 | | sge0fsum.x |
. . 3
β’ (π β π β Fin) |
2 | | sge0fsum.f |
. . . 4
β’ (π β πΉ:πβΆ(0[,)+β)) |
3 | 2 | fge0icoicc 45067 |
. . 3
β’ (π β πΉ:πβΆ(0[,]+β)) |
4 | 1, 3 | sge0xrcl 45087 |
. 2
β’ (π β
(Ξ£^βπΉ) β
β*) |
5 | | rge0ssre 13429 |
. . . . 5
β’
(0[,)+β) β β |
6 | 2 | ffvelcdmda 7083 |
. . . . 5
β’ ((π β§ π₯ β π) β (πΉβπ₯) β (0[,)+β)) |
7 | 5, 6 | sselid 3979 |
. . . 4
β’ ((π β§ π₯ β π) β (πΉβπ₯) β β) |
8 | 1, 7 | fsumrecl 15676 |
. . 3
β’ (π β Ξ£π₯ β π (πΉβπ₯) β β) |
9 | 8 | rexrd 11260 |
. 2
β’ (π β Ξ£π₯ β π (πΉβπ₯) β
β*) |
10 | 1, 2 | sge0reval 45074 |
. . 3
β’ (π β
(Ξ£^βπΉ) = sup(ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)), β*, <
)) |
11 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))) β π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))) |
12 | | vex 3478 |
. . . . . . . . 9
β’ π€ β V |
13 | 12 | a1i 11 |
. . . . . . . 8
β’ ((π β§ π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))) β π€ β V) |
14 | | eqid 2732 |
. . . . . . . . 9
β’ (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)) = (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)) |
15 | 14 | elrnmpt 5953 |
. . . . . . . 8
β’ (π€ β V β (π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)) β βπ¦ β (π« π β© Fin)π€ = Ξ£π₯ β π¦ (πΉβπ₯))) |
16 | 13, 15 | syl 17 |
. . . . . . 7
β’ ((π β§ π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))) β (π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)) β βπ¦ β (π« π β© Fin)π€ = Ξ£π₯ β π¦ (πΉβπ₯))) |
17 | 11, 16 | mpbid 231 |
. . . . . 6
β’ ((π β§ π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))) β βπ¦ β (π« π β© Fin)π€ = Ξ£π₯ β π¦ (πΉβπ₯)) |
18 | | simp3 1138 |
. . . . . . . . . 10
β’ ((π β§ π¦ β (π« π β© Fin) β§ π€ = Ξ£π₯ β π¦ (πΉβπ₯)) β π€ = Ξ£π₯ β π¦ (πΉβπ₯)) |
19 | 1 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π¦ β (π« π β© Fin)) β π β Fin) |
20 | 2 | fge0npnf 45069 |
. . . . . . . . . . . . . . . 16
β’ (π β Β¬ +β β ran
πΉ) |
21 | 3, 20 | fge0iccre 45076 |
. . . . . . . . . . . . . . 15
β’ (π β πΉ:πβΆβ) |
22 | 21 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π¦ β (π« π β© Fin)) β πΉ:πβΆβ) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . 13
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π) β πΉ:πβΆβ) |
24 | | simpr 485 |
. . . . . . . . . . . . 13
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π) β π₯ β π) |
25 | 23, 24 | ffvelcdmd 7084 |
. . . . . . . . . . . 12
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π) β (πΉβπ₯) β β) |
26 | | 0xr 11257 |
. . . . . . . . . . . . . 14
β’ 0 β
β* |
27 | 26 | a1i 11 |
. . . . . . . . . . . . 13
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π) β 0 β
β*) |
28 | | pnfxr 11264 |
. . . . . . . . . . . . . 14
β’ +β
β β* |
29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π) β +β β
β*) |
30 | 3 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π¦ β (π« π β© Fin)) β πΉ:πβΆ(0[,]+β)) |
31 | 30 | ffvelcdmda 7083 |
. . . . . . . . . . . . 13
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π) β (πΉβπ₯) β (0[,]+β)) |
32 | | iccgelb 13376 |
. . . . . . . . . . . . 13
β’ ((0
β β* β§ +β β β* β§
(πΉβπ₯) β (0[,]+β)) β 0 β€ (πΉβπ₯)) |
33 | 27, 29, 31, 32 | syl3anc 1371 |
. . . . . . . . . . . 12
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π) β 0 β€ (πΉβπ₯)) |
34 | | elinel1 4194 |
. . . . . . . . . . . . . 14
β’ (π¦ β (π« π β© Fin) β π¦ β π« π) |
35 | | elpwi 4608 |
. . . . . . . . . . . . . 14
β’ (π¦ β π« π β π¦ β π) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . 13
β’ (π¦ β (π« π β© Fin) β π¦ β π) |
37 | 36 | adantl 482 |
. . . . . . . . . . . 12
β’ ((π β§ π¦ β (π« π β© Fin)) β π¦ β π) |
38 | 19, 25, 33, 37 | fsumless 15738 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β (π« π β© Fin)) β Ξ£π₯ β π¦ (πΉβπ₯) β€ Ξ£π₯ β π (πΉβπ₯)) |
39 | 38 | 3adant3 1132 |
. . . . . . . . . 10
β’ ((π β§ π¦ β (π« π β© Fin) β§ π€ = Ξ£π₯ β π¦ (πΉβπ₯)) β Ξ£π₯ β π¦ (πΉβπ₯) β€ Ξ£π₯ β π (πΉβπ₯)) |
40 | 18, 39 | eqbrtrd 5169 |
. . . . . . . . 9
β’ ((π β§ π¦ β (π« π β© Fin) β§ π€ = Ξ£π₯ β π¦ (πΉβπ₯)) β π€ β€ Ξ£π₯ β π (πΉβπ₯)) |
41 | 40 | 3exp 1119 |
. . . . . . . 8
β’ (π β (π¦ β (π« π β© Fin) β (π€ = Ξ£π₯ β π¦ (πΉβπ₯) β π€ β€ Ξ£π₯ β π (πΉβπ₯)))) |
42 | 41 | rexlimdv 3153 |
. . . . . . 7
β’ (π β (βπ¦ β (π« π β© Fin)π€ = Ξ£π₯ β π¦ (πΉβπ₯) β π€ β€ Ξ£π₯ β π (πΉβπ₯))) |
43 | 42 | adantr 481 |
. . . . . 6
β’ ((π β§ π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))) β (βπ¦ β (π« π β© Fin)π€ = Ξ£π₯ β π¦ (πΉβπ₯) β π€ β€ Ξ£π₯ β π (πΉβπ₯))) |
44 | 17, 43 | mpd 15 |
. . . . 5
β’ ((π β§ π€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))) β π€ β€ Ξ£π₯ β π (πΉβπ₯)) |
45 | 44 | ralrimiva 3146 |
. . . 4
β’ (π β βπ€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))π€ β€ Ξ£π₯ β π (πΉβπ₯)) |
46 | | elinel2 4195 |
. . . . . . . . . 10
β’ (π¦ β (π« π β© Fin) β π¦ β Fin) |
47 | 46 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π¦ β (π« π β© Fin)) β π¦ β Fin) |
48 | 22 | adantr 481 |
. . . . . . . . . 10
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π¦) β πΉ:πβΆβ) |
49 | 37 | sselda 3981 |
. . . . . . . . . 10
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π¦) β π₯ β π) |
50 | 48, 49 | ffvelcdmd 7084 |
. . . . . . . . 9
β’ (((π β§ π¦ β (π« π β© Fin)) β§ π₯ β π¦) β (πΉβπ₯) β β) |
51 | 47, 50 | fsumrecl 15676 |
. . . . . . . 8
β’ ((π β§ π¦ β (π« π β© Fin)) β Ξ£π₯ β π¦ (πΉβπ₯) β β) |
52 | 51 | rexrd 11260 |
. . . . . . 7
β’ ((π β§ π¦ β (π« π β© Fin)) β Ξ£π₯ β π¦ (πΉβπ₯) β
β*) |
53 | 52 | ralrimiva 3146 |
. . . . . 6
β’ (π β βπ¦ β (π« π β© Fin)Ξ£π₯ β π¦ (πΉβπ₯) β
β*) |
54 | 14 | rnmptss 7118 |
. . . . . 6
β’
(βπ¦ β
(π« π β©
Fin)Ξ£π₯ β π¦ (πΉβπ₯) β β* β ran
(π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)) β
β*) |
55 | 53, 54 | syl 17 |
. . . . 5
β’ (π β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)) β
β*) |
56 | | supxrleub 13301 |
. . . . 5
β’ ((ran
(π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)) β β* β§
Ξ£π₯ β π (πΉβπ₯) β β*) β (sup(ran
(π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)), β*, < ) β€
Ξ£π₯ β π (πΉβπ₯) β βπ€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))π€ β€ Ξ£π₯ β π (πΉβπ₯))) |
57 | 55, 9, 56 | syl2anc 584 |
. . . 4
β’ (π β (sup(ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)), β*, < ) β€
Ξ£π₯ β π (πΉβπ₯) β βπ€ β ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯))π€ β€ Ξ£π₯ β π (πΉβπ₯))) |
58 | 45, 57 | mpbird 256 |
. . 3
β’ (π β sup(ran (π¦ β (π« π β© Fin) β¦ Ξ£π₯ β π¦ (πΉβπ₯)), β*, < ) β€
Ξ£π₯ β π (πΉβπ₯)) |
59 | 10, 58 | eqbrtrd 5169 |
. 2
β’ (π β
(Ξ£^βπΉ) β€ Ξ£π₯ β π (πΉβπ₯)) |
60 | | ssid 4003 |
. . . 4
β’ π β π |
61 | 60 | a1i 11 |
. . 3
β’ (π β π β π) |
62 | 1, 2, 61, 1 | fsumlesge0 45079 |
. 2
β’ (π β Ξ£π₯ β π (πΉβπ₯) β€
(Ξ£^βπΉ)) |
63 | 4, 9, 59, 62 | xrletrid 13130 |
1
β’ (π β
(Ξ£^βπΉ) = Ξ£π₯ β π (πΉβπ₯)) |