| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnfval | Structured version Visualization version GIF version | ||
| Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0pnfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| sge0pnfval.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| sge0pnfval.pnf | ⊢ (𝜑 → +∞ ∈ ran 𝐹) |
| Ref | Expression |
|---|---|
| sge0pnfval | ⊢ (𝜑 → (Σ^‘𝐹) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0pnfval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | sge0pnfval.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 3 | 1, 2 | sge0vald 46367 | . 2 ⊢ (𝜑 → (Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ))) |
| 4 | sge0pnfval.pnf | . . 3 ⊢ (𝜑 → +∞ ∈ ran 𝐹) | |
| 5 | 4 | iftrued 4496 | . 2 ⊢ (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) = +∞) |
| 6 | 3, 5 | eqtrd 2764 | 1 ⊢ (𝜑 → (Σ^‘𝐹) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ifcif 4488 𝒫 cpw 4563 ↦ cmpt 5188 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 supcsup 9391 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 [,]cicc 13309 Σcsu 15652 Σ^csumge0 46360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-seq 13967 df-sum 15653 df-sumge0 46361 |
| This theorem is referenced by: sge0sn 46377 sge0tsms 46378 sge0cl 46379 sge0f1o 46380 sge0rern 46386 sge0supre 46387 sge0sup 46389 sge0pr 46392 sge0le 46405 sge0split 46407 sge0iunmpt 46416 sge0pnfmpt 46443 |
| Copyright terms: Public domain | W3C validator |