Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnfval Structured version   Visualization version   GIF version

Theorem sge0pnfval 46533
Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnfval.x (𝜑𝑋𝑉)
sge0pnfval.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnfval.pnf (𝜑 → +∞ ∈ ran 𝐹)
Assertion
Ref Expression
sge0pnfval (𝜑 → (Σ^𝐹) = +∞)

Proof of Theorem sge0pnfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnfval.x . . 3 (𝜑𝑋𝑉)
2 sge0pnfval.f . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0vald 46529 . 2 (𝜑 → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
4 sge0pnfval.pnf . . 3 (𝜑 → +∞ ∈ ran 𝐹)
54iftrued 4484 . 2 (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )) = +∞)
63, 5eqtrd 2768 1 (𝜑 → (Σ^𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cin 3897  ifcif 4476  𝒫 cpw 4551  cmpt 5176  ran crn 5622  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8879  supcsup 9335  0cc0 11017  +∞cpnf 11154  *cxr 11156   < clt 11157  [,]cicc 13255  Σcsu 15600  Σ^csumge0 46522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-pre-lttri 11091  ax-pre-lttrn 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-seq 13916  df-sum 15601  df-sumge0 46523
This theorem is referenced by:  sge0sn  46539  sge0tsms  46540  sge0cl  46541  sge0f1o  46542  sge0rern  46548  sge0supre  46549  sge0sup  46551  sge0pr  46554  sge0le  46567  sge0split  46569  sge0iunmpt  46578  sge0pnfmpt  46605
  Copyright terms: Public domain W3C validator