| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnfval | Structured version Visualization version GIF version | ||
| Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0pnfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| sge0pnfval.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| sge0pnfval.pnf | ⊢ (𝜑 → +∞ ∈ ran 𝐹) |
| Ref | Expression |
|---|---|
| sge0pnfval | ⊢ (𝜑 → (Σ^‘𝐹) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0pnfval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | sge0pnfval.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 3 | 1, 2 | sge0vald 46529 | . 2 ⊢ (𝜑 → (Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ))) |
| 4 | sge0pnfval.pnf | . . 3 ⊢ (𝜑 → +∞ ∈ ran 𝐹) | |
| 5 | 4 | iftrued 4484 | . 2 ⊢ (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) = +∞) |
| 6 | 3, 5 | eqtrd 2768 | 1 ⊢ (𝜑 → (Σ^‘𝐹) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ifcif 4476 𝒫 cpw 4551 ↦ cmpt 5176 ran crn 5622 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Fincfn 8879 supcsup 9335 0cc0 11017 +∞cpnf 11154 ℝ*cxr 11156 < clt 11157 [,]cicc 13255 Σcsu 15600 Σ^csumge0 46522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-seq 13916 df-sum 15601 df-sumge0 46523 |
| This theorem is referenced by: sge0sn 46539 sge0tsms 46540 sge0cl 46541 sge0f1o 46542 sge0rern 46548 sge0supre 46549 sge0sup 46551 sge0pr 46554 sge0le 46567 sge0split 46569 sge0iunmpt 46578 sge0pnfmpt 46605 |
| Copyright terms: Public domain | W3C validator |