Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnfval Structured version   Visualization version   GIF version

Theorem sge0pnfval 46411
Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnfval.x (𝜑𝑋𝑉)
sge0pnfval.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnfval.pnf (𝜑 → +∞ ∈ ran 𝐹)
Assertion
Ref Expression
sge0pnfval (𝜑 → (Σ^𝐹) = +∞)

Proof of Theorem sge0pnfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnfval.x . . 3 (𝜑𝑋𝑉)
2 sge0pnfval.f . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0vald 46407 . 2 (𝜑 → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
4 sge0pnfval.pnf . . 3 (𝜑 → +∞ ∈ ran 𝐹)
54iftrued 4478 . 2 (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )) = +∞)
63, 5eqtrd 2766 1 (𝜑 → (Σ^𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cin 3896  ifcif 4470  𝒫 cpw 4545  cmpt 5167  ran crn 5612  wf 6472  cfv 6476  (class class class)co 7341  Fincfn 8864  supcsup 9319  0cc0 11001  +∞cpnf 11138  *cxr 11140   < clt 11141  [,]cicc 13243  Σcsu 15588  Σ^csumge0 46400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-seq 13904  df-sum 15589  df-sumge0 46401
This theorem is referenced by:  sge0sn  46417  sge0tsms  46418  sge0cl  46419  sge0f1o  46420  sge0rern  46426  sge0supre  46427  sge0sup  46429  sge0pr  46432  sge0le  46445  sge0split  46447  sge0iunmpt  46456  sge0pnfmpt  46483
  Copyright terms: Public domain W3C validator