Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnfval Structured version   Visualization version   GIF version

Theorem sge0pnfval 46358
Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnfval.x (𝜑𝑋𝑉)
sge0pnfval.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnfval.pnf (𝜑 → +∞ ∈ ran 𝐹)
Assertion
Ref Expression
sge0pnfval (𝜑 → (Σ^𝐹) = +∞)

Proof of Theorem sge0pnfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnfval.x . . 3 (𝜑𝑋𝑉)
2 sge0pnfval.f . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0vald 46354 . 2 (𝜑 → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
4 sge0pnfval.pnf . . 3 (𝜑 → +∞ ∈ ran 𝐹)
54iftrued 4486 . 2 (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )) = +∞)
63, 5eqtrd 2764 1 (𝜑 → (Σ^𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3904  ifcif 4478  𝒫 cpw 4553  cmpt 5176  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  supcsup 9349  0cc0 11028  +∞cpnf 11165  *cxr 11167   < clt 11168  [,]cicc 13269  Σcsu 15611  Σ^csumge0 46347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-seq 13927  df-sum 15612  df-sumge0 46348
This theorem is referenced by:  sge0sn  46364  sge0tsms  46365  sge0cl  46366  sge0f1o  46367  sge0rern  46373  sge0supre  46374  sge0sup  46376  sge0pr  46379  sge0le  46392  sge0split  46394  sge0iunmpt  46403  sge0pnfmpt  46430
  Copyright terms: Public domain W3C validator