Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnfval Structured version   Visualization version   GIF version

Theorem sge0pnfval 46371
Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnfval.x (𝜑𝑋𝑉)
sge0pnfval.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnfval.pnf (𝜑 → +∞ ∈ ran 𝐹)
Assertion
Ref Expression
sge0pnfval (𝜑 → (Σ^𝐹) = +∞)

Proof of Theorem sge0pnfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnfval.x . . 3 (𝜑𝑋𝑉)
2 sge0pnfval.f . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0vald 46367 . 2 (𝜑 → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
4 sge0pnfval.pnf . . 3 (𝜑 → +∞ ∈ ran 𝐹)
54iftrued 4496 . 2 (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )) = +∞)
63, 5eqtrd 2764 1 (𝜑 → (Σ^𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3913  ifcif 4488  𝒫 cpw 4563  cmpt 5188  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  supcsup 9391  0cc0 11068  +∞cpnf 11205  *cxr 11207   < clt 11208  [,]cicc 13309  Σcsu 15652  Σ^csumge0 46360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-seq 13967  df-sum 15653  df-sumge0 46361
This theorem is referenced by:  sge0sn  46377  sge0tsms  46378  sge0cl  46379  sge0f1o  46380  sge0rern  46386  sge0supre  46387  sge0sup  46389  sge0pr  46392  sge0le  46405  sge0split  46407  sge0iunmpt  46416  sge0pnfmpt  46443
  Copyright terms: Public domain W3C validator