Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pnfval Structured version   Visualization version   GIF version

Theorem sge0pnfval 42951
 Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pnfval.x (𝜑𝑋𝑉)
sge0pnfval.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0pnfval.pnf (𝜑 → +∞ ∈ ran 𝐹)
Assertion
Ref Expression
sge0pnfval (𝜑 → (Σ^𝐹) = +∞)

Proof of Theorem sge0pnfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0pnfval.x . . 3 (𝜑𝑋𝑉)
2 sge0pnfval.f . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
31, 2sge0vald 42947 . 2 (𝜑 → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
4 sge0pnfval.pnf . . 3 (𝜑 → +∞ ∈ ran 𝐹)
54iftrued 4447 . 2 (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )) = +∞)
63, 5eqtrd 2857 1 (𝜑 → (Σ^𝐹) = +∞)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2114   ∩ cin 3907  ifcif 4439  𝒫 cpw 4511   ↦ cmpt 5122  ran crn 5533  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140  Fincfn 8496  supcsup 8892  0cc0 10526  +∞cpnf 10661  ℝ*cxr 10663   < clt 10664  [,]cicc 12729  Σcsu 15033  Σ^csumge0 42940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-sum 15034  df-sumge0 42941 This theorem is referenced by:  sge0sn  42957  sge0tsms  42958  sge0cl  42959  sge0f1o  42960  sge0rern  42966  sge0supre  42967  sge0sup  42969  sge0pr  42972  sge0le  42985  sge0split  42987  sge0iunmpt  42996  sge0pnfmpt  43023
 Copyright terms: Public domain W3C validator