| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0pnfval | Structured version Visualization version GIF version | ||
| Description: If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0pnfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| sge0pnfval.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| sge0pnfval.pnf | ⊢ (𝜑 → +∞ ∈ ran 𝐹) |
| Ref | Expression |
|---|---|
| sge0pnfval | ⊢ (𝜑 → (Σ^‘𝐹) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0pnfval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | sge0pnfval.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 3 | 1, 2 | sge0vald 46407 | . 2 ⊢ (𝜑 → (Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ))) |
| 4 | sge0pnfval.pnf | . . 3 ⊢ (𝜑 → +∞ ∈ ran 𝐹) | |
| 5 | 4 | iftrued 4478 | . 2 ⊢ (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) = +∞) |
| 6 | 3, 5 | eqtrd 2766 | 1 ⊢ (𝜑 → (Σ^‘𝐹) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ifcif 4470 𝒫 cpw 4545 ↦ cmpt 5167 ran crn 5612 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 supcsup 9319 0cc0 11001 +∞cpnf 11138 ℝ*cxr 11140 < clt 11141 [,]cicc 13243 Σcsu 15588 Σ^csumge0 46400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-seq 13904 df-sum 15589 df-sumge0 46401 |
| This theorem is referenced by: sge0sn 46417 sge0tsms 46418 sge0cl 46419 sge0f1o 46420 sge0rern 46426 sge0supre 46427 sge0sup 46429 sge0pr 46432 sge0le 46445 sge0split 46447 sge0iunmpt 46456 sge0pnfmpt 46483 |
| Copyright terms: Public domain | W3C validator |