HomeHome Metamath Proof Explorer
Theorem List (p. 144 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 14301-14400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremccatrid 14301 Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
(𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆)
 
Theoremccatass 14302 Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) = (𝑆 ++ (𝑇 ++ 𝑈)))
 
Theoremccatrn 14303 The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))
 
Theoremccatidid 14304 Concatenation of the empty word by the empty word. (Contributed by AV, 26-Mar-2022.)
(∅ ++ ∅) = ∅
 
Theoremlswccatn0lsw 14305 The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
 
Theoremlswccat0lsw 14306 The last symbol of a word concatenated with the empty word is the last symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
(𝑊 ∈ Word 𝑉 → (lastS‘(𝑊 ++ ∅)) = (lastS‘𝑊))
 
Theoremccatalpha 14307 A concatenation of two arbitrary words is a word over an alphabet iff the symbols of both words belong to the alphabet. (Contributed by AV, 28-Feb-2021.)
((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
 
Theoremccatrcl1 14308 Reverse closure of a concatenation: If the concatenation of two arbitrary words is a word over an alphabet then the symbols of the first word belong to the alphabet. (Contributed by AV, 3-Mar-2021.)
((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (𝑊 = (𝐴 ++ 𝐵) ∧ 𝑊 ∈ Word 𝑆)) → 𝐴 ∈ Word 𝑆)
 
5.7.4  Singleton words
 
Syntaxcs1 14309 Syntax for the singleton word constructor.
class ⟨“𝐴”⟩
 
Definitiondf-s1 14310 Define the canonical injection from symbols to words. Although not required, 𝐴 should usually be a set. Otherwise, the singleton word ⟨“𝐴”⟩ would be the singleton word consisting of the empty set, see s1prc 14318, and not, as maybe expected, the empty word, see also s1nz 14321. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
 
Theoremids1 14311 Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴”⟩ = ⟨“( I ‘𝐴)”⟩
 
Theorems1val 14312 Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
 
Theorems1rn 14313 The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.)
(𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})
 
Theorems1eq 14314 Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
(𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
 
Theorems1eqd 14315 Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
 
Theorems1cl 14316 A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
(𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
 
Theorems1cld 14317 A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
(𝜑𝐴𝐵)       (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)
 
Theorems1prc 14318 Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.)
𝐴 ∈ V → ⟨“𝐴”⟩ = ⟨“∅”⟩)
 
Theorems1cli 14319 A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴”⟩ ∈ Word V
 
Theorems1len 14320 Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(♯‘⟨“𝐴”⟩) = 1
 
Theorems1nz 14321 A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.)
⟨“𝐴”⟩ ≠ ∅
 
Theorems1dm 14322 The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020.)
dom ⟨“𝐴”⟩ = {0}
 
Theorems1dmALT 14323 Alternate version of s1dm 14322, having a shorter proof, but requiring that 𝐴 is a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})
 
Theorems1fv 14324 Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(𝐴𝐵 → (⟨“𝐴”⟩‘0) = 𝐴)
 
Theoremlsws1 14325 The last symbol of a singleton word is its symbol. (Contributed by AV, 22-Oct-2018.)
(𝐴𝑉 → (lastS‘⟨“𝐴”⟩) = 𝐴)
 
Theoremeqs1 14326 A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)
 
Theoremwrdl1exs1 14327* A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021.)
((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 1) → ∃𝑠𝑆 𝑊 = ⟨“𝑠”⟩)
 
Theoremwrdl1s1 14328 A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
(𝑆𝑉 → (𝑊 = ⟨“𝑆”⟩ ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆)))
 
Theorems111 14329 The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))
 
5.7.5  Concatenations with singleton words
 
Theoremccatws1cl 14330 The concatenation of a word with a singleton word is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝑊 ∈ Word 𝑉𝑋𝑉) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
 
Theoremccatws1clv 14331 The concatenation of a word with a singleton word (which can be over a different alphabet) is a word. (Contributed by AV, 5-Mar-2022.)
(𝑊 ∈ Word 𝑉 → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word V)
 
Theoremccat2s1cl 14332 The concatenation of two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝑋𝑉𝑌𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
 
Theoremccats1alpha 14333 A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.)
((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
 
Theoremccatws1len 14334 The length of the concatenation of a word with a singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 4-Mar-2022.)
(𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
 
Theoremccatws1lenp1b 14335 The length of a word is 𝑁 iff the length of the concatenation of the word with a singleton word is 𝑁 + 1. (Contributed by AV, 4-Mar-2022.)
((𝑊 ∈ Word 𝑉𝑁 ∈ ℕ0) → ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁))
 
Theoremwrdlenccats1lenm1 14336 The length of a word is the length of the word concatenated with a singleton word minus 1. (Contributed by AV, 28-Jun-2018.) (Revised by AV, 5-Mar-2022.)
(𝑊 ∈ Word 𝑉 → ((♯‘(𝑊 ++ ⟨“𝑆”⟩)) − 1) = (♯‘𝑊))
 
Theoremccat2s1len 14337 The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 14-Jan-2024.)
(♯‘(⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) = 2
 
Theoremccat2s1lenOLD 14338 Obsolete version of ccat2s1len 14337 as of 14-Jan-2024. The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑋𝑉𝑌𝑉) → (♯‘(⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)) = 2)
 
Theoremccatw2s1cl 14339 The concatenation of a word with two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
 
Theoremccatw2s1len 14340 The length of the concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 5-Mar-2022.)
(𝑊 ∈ Word 𝑉 → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
 
Theoremccats1val1 14341 Value of a symbol in the left half of a word concatenated with a single symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by JJ, 20-Jan-2024.)
((𝑊 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (𝑊𝐼))
 
Theoremccats1val1OLD 14342 Obsolete version of ccats1val1 14341 as of 20-Jan-2024. Value of a symbol in the left half of a word concatenated with a single symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (𝑊𝐼))
 
Theoremccats1val2 14343 Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.)
((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)
 
Theoremccat1st1st 14344 The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.)
(𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
 
Theoremccat2s1p1 14345 Extract the first of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.)
(𝑋𝑉 → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘0) = 𝑋)
 
Theoremccat2s1p2 14346 Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by JJ, 20-Jan-2024.)
(𝑌𝑉 → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = 𝑌)
 
Theoremccat2s1p1OLD 14347 Obsolete version of ccat2s1p1 14345 as of 20-Jan-2024. Extract the first of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑋𝑉𝑌𝑉) → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘0) = 𝑋)
 
Theoremccat2s1p2OLD 14348 Obsolete version of ccat2s1p2 14346 as of 20-Jan-2024. Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑋𝑉𝑌𝑉) → ((⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)‘1) = 𝑌)
 
Theoremccatw2s1ass 14349 Associative law for a concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
(𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
 
Theoremccatw2s1assOLD 14350 Obsolete version of ccatw2s1ass 14349 as of 29-Jan-2024. Associative law for a concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
 
Theoremccatws1n0 14351 The concatenation of a word with a singleton word is not the empty set. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 5-Mar-2022.)
(𝑊 ∈ Word 𝑉 → (𝑊 ++ ⟨“𝑋”⟩) ≠ ∅)
 
Theoremccatws1ls 14352 The last symbol of the concatenation of a word with a singleton word is the symbol of the singleton word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
((𝑊 ∈ Word 𝑉𝑋𝑉) → ((𝑊 ++ ⟨“𝑋”⟩)‘(♯‘𝑊)) = 𝑋)
 
Theoremlswccats1 14353 The last symbol of a word concatenated with a singleton word is the symbol of the singleton word. (Contributed by AV, 6-Aug-2018.) (Proof shortened by AV, 22-Oct-2018.)
((𝑊 ∈ Word 𝑉𝑆𝑉) → (lastS‘(𝑊 ++ ⟨“𝑆”⟩)) = 𝑆)
 
Theoremlswccats1fst 14354 The last symbol of a nonempty word concatenated with its first symbol is the first symbol. (Contributed by AV, 28-Jun-2018.) (Proof shortened by AV, 1-May-2020.)
((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
 
Theoremccatw2s1p1 14355 Extract the symbol of the first singleton word of a word concatenated with this singleton word and another singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 1-May-2020.) (Revised by AV, 29-Jan-2024.)
((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁𝑋𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑁) = 𝑋)
 
Theoremccatw2s1p1OLD 14356 Obsolete version of ccatw2s1p1 14355 as of 29-Jan-2024. Extract the symbol of the first singleton word of a word concatenated with this singleton word and another singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑁) = 𝑋)
 
Theoremccatw2s1p2 14357 Extract the second of two single symbols concatenated with a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.)
(((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 + 1)) = 𝑌)
 
Theoremccat2s1fvw 14358 Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 28-Jan-2024.)
((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))
 
Theoremccat2s1fvwOLD 14359 Obsolete version of ccat2s1fvw 14358 as of 28-Jan-2024. Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
(((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))
 
Theoremccat2s1fst 14360 The first symbol of the concatenation of a word with two single symbols. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 28-Jan-2024.)
((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
 
Theoremccat2s1fstOLD 14361 Obsolete version of ccat2s1fst 14360 as of 28-Jan-2024. The first symbol of the concatenation of a word with two single symbols. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
(((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
 
5.7.6  Subwords/substrings
 
Syntaxcsubstr 14362 Syntax for the subword operator.
class substr
 
Definitiondf-substr 14363* Define an operation which extracts portions (called subwords or substrings) of words. Definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.)
substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
 
Theoremswrdnznd 14364 The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6813). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.)
(¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
 
Theoremswrdval 14365* Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
 
Theoremswrd00 14366 A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.)
(𝑆 substr ⟨𝑋, 𝑋⟩) = ∅
 
Theoremswrdcl 14367 Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
 
Theoremswrdval2 14368* Value of the subword extractor in its intended domain. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
 
Theoremswrdlen 14369 Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015.)
((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))
 
Theoremswrdfv 14370 A symbol in an extracted subword, indexed using the subword's indices. (Contributed by Stefan O'Rear, 16-Aug-2015.)
(((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘𝑋) = (𝑆‘(𝑋 + 𝐹)))
 
Theoremswrdfv0 14371 The first symbol in an extracted subword. (Contributed by AV, 27-Apr-2022.)
((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆𝐹))
 
Theoremswrdf 14372 A subword of a word is a function from a half-open range of nonnegative integers of the same length as the subword to the set of symbols for the original word. (Contributed by AV, 13-Nov-2018.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝑉)
 
Theoremswrdvalfn 14373 Value of the subword extractor as function with domain. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
((𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)))
 
Theoremswrdrn 14374 The range of a subword of a word is a subset of the set of symbols for the word. (Contributed by AV, 13-Nov-2018.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝑉)
 
Theoremswrdlend 14375 The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
 
Theoremswrdnd 14376 The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
 
Theoremswrdnd2 14377 Value of the subword extractor outside its intended domain. (Contributed by Alexander van der Vekens, 24-May-2018.)
((𝑊 ∈ Word 𝑉𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴 ∨ (♯‘𝑊) ≤ 𝐴𝐵 ≤ 0) → (𝑊 substr ⟨𝐴, 𝐵⟩) = ∅))
 
Theoremswrdnnn0nd 14378 The value of a subword operation for arguments not being nonnegative integers is the empty set. (Contributed by AV, 2-Dec-2022.)
((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
 
Theoremswrdnd0 14379 The value of a subword operation for inproper arguments is the empty set. (Contributed by AV, 2-Dec-2022.)
(𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
 
Theoremswrd0 14380 A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
(∅ substr ⟨𝐹, 𝐿⟩) = ∅
 
Theoremswrdrlen 14381 Length of a right-anchored subword. (Contributed by Alexander van der Vekens, 5-Apr-2018.)
((𝑊 ∈ Word 𝑉𝐼 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐼))
 
Theoremswrdlen2 14382 Length of an extracted subword. (Contributed by AV, 5-May-2020.)
((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))
 
Theoremswrdfv2 14383 A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020.)
(((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ (ℤ𝐹)) ∧ 𝐿 ≤ (♯‘𝑆)) ∧ 𝑋 ∈ (𝐹..^𝐿)) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘(𝑋𝐹)) = (𝑆𝑋))
 
Theoremswrdwrdsymb 14384 A subword is a word over the symbols it consists of. (Contributed by AV, 2-Dec-2022.)
(𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
 
Theoremswrdsb0eq 14385 Two subwords with the same bounds are equal if the range is not valid. (Contributed by AV, 4-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
 
Theoremswrdsbslen 14386 Two subwords with the same bounds have the same length. (Contributed by AV, 4-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
 
Theoremswrdspsleq 14387* Two words have a common subword (starting at the same position with the same length) iff they have the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Proof shortened by AV, 7-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
 
Theoremswrds1 14388 Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
 
Theoremswrdlsw 14389 Extract the last single symbol from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
 
Theoremccatswrd 14390 Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015.)
((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 substr ⟨𝑋, 𝑍⟩))
 
Theoremswrdccat2 14391 Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)
 
5.7.7  Prefixes of a word
 
Syntaxcpfx 14392 Syntax for the prefix operator.
class prefix
 
Definitiondf-pfx 14393* Define an operation which extracts prefixes of words, i.e. subwords (or substrings) starting at the beginning of a word (or string). In other words, (𝑆 prefix 𝐿) is the prefix of the word 𝑆 of length 𝐿. Definition in Section 9.1 of [AhoHopUll] p. 318. See also Wikipedia "Substring" https://en.wikipedia.org/wiki/Substring#Prefix. (Contributed by AV, 2-May-2020.)
prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
 
Theorempfxnndmnd 14394 The value of a prefix operation for out-of-domain arguments. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6813). (Contributed by AV, 3-Dec-2022.) (New usage is discouraged.)
(¬ (𝑆 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = ∅)
 
Theorempfxval 14395 Value of a prefix operation. (Contributed by AV, 2-May-2020.)
((𝑆𝑉𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
 
Theorempfx00 14396 The zero length prefix is the empty set. (Contributed by AV, 2-May-2020.)
(𝑆 prefix 0) = ∅
 
Theorempfx0 14397 A prefix of an empty set is always the empty set. (Contributed by AV, 3-May-2020.)
(∅ prefix 𝐿) = ∅
 
Theorempfxval0 14398 Value of a prefix operation. This theorem should only be used in proofs if 𝐿 ∈ ℕ0 is not available. Otherwise (and usually), pfxval 14395 should be used. (Contributed by AV, 3-Dec-2022.) (New usage is discouraged.)
(𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐿) = (𝑆 substr ⟨0, 𝐿⟩))
 
Theorempfxcl 14399 Closure of the prefix extractor. (Contributed by AV, 2-May-2020.)
(𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐿) ∈ Word 𝐴)
 
Theorempfxmpt 14400* Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆𝑥)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >