| Metamath
Proof Explorer Theorem List (p. 144 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 4bc2eq6 14301 | The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
| ⊢ (4C2) = 6 | ||
| Syntax | chash 14302 | Extend the definition of a class to include the set size function. |
| class ♯ | ||
| Definition | df-hash 14303 | Define the set size function ♯, which gives the cardinality of a finite set as a member of ℕ0, and assigns all infinite sets the value +∞. For example, (♯‘{0, 1, 2}) = 3 (ex-hash 30389). (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) | ||
| Theorem | hashkf 14304 | The finite part of the size function maps all finite sets to their cardinality, as members of ℕ0. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) & ⊢ 𝐾 = (𝐺 ∘ card) ⇒ ⊢ 𝐾:Fin⟶ℕ0 | ||
| Theorem | hashgval 14305* | The value of the ♯ function in terms of the mapping 𝐺 from ω to ℕ0. The proof avoids the use of ax-ac 10419. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (♯‘𝐴)) | ||
| Theorem | hashginv 14306* | The converse of 𝐺 maps the size function's value to card. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝐴 ∈ Fin → (◡𝐺‘(♯‘𝐴)) = (card‘𝐴)) | ||
| Theorem | hashinf 14307 | The value of the ♯ function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | ||
| Theorem | hashbnd 14308 | If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) | ||
| Theorem | hashfxnn0 14309 | The size function is a function into the extended nonnegative integers. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by AV, 10-Dec-2020.) |
| ⊢ ♯:V⟶ℕ0* | ||
| Theorem | hashf 14310 | The size function maps all finite sets to their cardinality, as members of ℕ0, and infinite sets to +∞. TODO-AV: mark as OBSOLETE and replace it by hashfxnn0 14309? (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 13-Jul-2014.) (Proof shortened by AV, 24-Oct-2021.) |
| ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | ||
| Theorem | hashxnn0 14311 | The value of the hash function for a set is an extended nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 10-Dec-2020.) |
| ⊢ (𝑀 ∈ 𝑉 → (♯‘𝑀) ∈ ℕ0*) | ||
| Theorem | hashresfn 14312 | Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| ⊢ (♯ ↾ 𝐴) Fn 𝐴 | ||
| Theorem | dmhashres 14313 | Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
| ⊢ dom (♯ ↾ 𝐴) = 𝐴 | ||
| Theorem | hashnn0pnf 14314 | The value of the hash function for a set is either a nonnegative integer or positive infinity. TODO-AV: mark as OBSOLETE and replace it by hashxnn0 14311? (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
| ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) | ||
| Theorem | hashnnn0genn0 14315 | If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ (♯‘𝑀) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀)) | ||
| Theorem | hashnemnf 14316 | The size of a set is never minus infinity. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ≠ -∞) | ||
| Theorem | hashv01gt1 14317 | The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.) |
| ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | ||
| Theorem | hashfz1 14318 | The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | ||
| Theorem | hashen 14319 | Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
| Theorem | hasheni 14320 | Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → (♯‘𝐴) = (♯‘𝐵)) | ||
| Theorem | hasheqf1o 14321* | The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
| Theorem | fiinfnf1o 14322* | There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
| Theorem | hasheqf1oi 14323* | The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017.) (Revised by AV, 4-May-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵))) | ||
| Theorem | hashf1rn 14324 | The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 4-May-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) | ||
| Theorem | hasheqf1od 14325 | The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by AV, 4-May-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) ⇒ ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) | ||
| Theorem | fz1eqb 14326 | Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((1...𝑀) = (1...𝑁) ↔ 𝑀 = 𝑁)) | ||
| Theorem | hashcard 14327 | The size function of the cardinality function. (Contributed by Mario Carneiro, 19-Sep-2013.) (Revised by Mario Carneiro, 4-Nov-2013.) |
| ⊢ (𝐴 ∈ Fin → (♯‘(card‘𝐴)) = (♯‘𝐴)) | ||
| Theorem | hashcl 14328 | Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | ||
| Theorem | hashxrcl 14329 | Extended real closure of the ♯ function. (Contributed by Mario Carneiro, 22-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ∈ ℝ*) | ||
| Theorem | hashclb 14330 | Reverse closure of the ♯ function. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (♯‘𝐴) ∈ ℕ0)) | ||
| Theorem | nfile 14331 | The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵)) | ||
| Theorem | hashvnfin 14332 | A set of finite size is a finite set. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑆) = 𝑁 → 𝑆 ∈ Fin)) | ||
| Theorem | hashnfinnn0 14333 | The size of an infinite set is not a nonnegative integer. (Contributed by Alexander van der Vekens, 21-Dec-2017.) (Proof shortened by Alexander van der Vekens, 18-Jan-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) ∉ ℕ0) | ||
| Theorem | isfinite4 14334 | A finite set is equinumerous to the range of integers from one up to the hash value of the set. In other words, counting objects with natural numbers works if and only if it is a finite collection. (Contributed by Richard Penner, 26-Feb-2020.) |
| ⊢ (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴) | ||
| Theorem | hasheq0 14335 | Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | ||
| Theorem | hashneq0 14336 | Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) | ||
| Theorem | hashgt0n0 14337 | If the size of a set is greater than 0, the set is not empty. (Contributed by AV, 5-Aug-2018.) (Proof shortened by AV, 18-Nov-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 0 < (♯‘𝐴)) → 𝐴 ≠ ∅) | ||
| Theorem | hashnncl 14338 | Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) | ||
| Theorem | hash0 14339 | The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
| ⊢ (♯‘∅) = 0 | ||
| Theorem | hashelne0d 14340 | A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ¬ (♯‘𝐴) = 0) | ||
| Theorem | hashsng 14341 | The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) | ||
| Theorem | hashen1 14342 | A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) | ||
| Theorem | hash1elsn 14343 | A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → (♯‘𝐴) = 1) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 = {𝐵}) | ||
| Theorem | hashrabrsn 14344* | The size of a restricted class abstraction restricted to a singleton is a nonnegative integer. (Contributed by Alexander van der Vekens, 22-Dec-2017.) |
| ⊢ (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) ∈ ℕ0 | ||
| Theorem | hashrabsn01 14345* | The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
| ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) | ||
| Theorem | hashrabsn1 14346* | If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
| ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) | ||
| Theorem | hashfn 14347 | A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ (𝐹 Fn 𝐴 → (♯‘𝐹) = (♯‘𝐴)) | ||
| Theorem | fseq1hash 14348 | The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | ||
| Theorem | hashgadd 14349 | 𝐺 maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) | ||
| Theorem | hashgval2 14350 | A short expression for the 𝐺 function of hashgf1o 13943. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | ||
| Theorem | hashdom 14351 | Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
| Theorem | hashdomi 14352 | Non-strict order relation of the ♯ function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → (♯‘𝐴) ≤ (♯‘𝐵)) | ||
| Theorem | hashsdom 14353 | Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
| Theorem | hashun 14354 | The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | ||
| Theorem | hashun2 14355 | The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | ||
| Theorem | hashun3 14356 | The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | hashinfxadd 14357 | The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) | ||
| Theorem | hashunx 14358 | The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 14354. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))) | ||
| Theorem | hashge0 14359 | The cardinality of a set is greater than or equal to zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → 0 ≤ (♯‘𝐴)) | ||
| Theorem | hashgt0 14360 | The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴)) | ||
| Theorem | hashge1 14361 | The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 1 ≤ (♯‘𝐴)) | ||
| Theorem | 1elfz0hash 14362 | 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈ (0...(♯‘𝐴))) | ||
| Theorem | hashnn0n0nn 14363 | If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
| ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) | ||
| Theorem | hashunsng 14364 | The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) |
| ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1))) | ||
| Theorem | hashunsngx 14365 | The size of the union of a set with a disjoint singleton is the extended real addition of the size of the set and 1, analogous to hashunsng 14364. (Contributed by BTernaryTau, 9-Sep-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝐵 ∈ 𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))) | ||
| Theorem | hashunsnggt 14366 | The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) | ||
| Theorem | hashprg 14367 | The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) | ||
| Theorem | elprchashprn2 14368 | If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
| ⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) | ||
| Theorem | hashprb 14369 | The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
| ⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2) | ||
| Theorem | hashprdifel 14370 | The elements of an unordered pair of size 2 are different sets. (Contributed by AV, 27-Jan-2020.) |
| ⊢ 𝑆 = {𝐴, 𝐵} ⇒ ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) | ||
| Theorem | prhash2ex 14371 | There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 14380, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.) |
| ⊢ (♯‘{0, 1}) = 2 | ||
| Theorem | hashle00 14372 | If the size of a set is less than or equal to zero, the set must be empty. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Proof shortened by AV, 24-Oct-2021.) |
| ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅)) | ||
| Theorem | hashgt0elex 14373* | If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥 ∈ 𝑉) | ||
| Theorem | hashgt0elexb 14374* | The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018.) |
| ⊢ (𝑉 ∈ 𝑊 → (0 < (♯‘𝑉) ↔ ∃𝑥 𝑥 ∈ 𝑉)) | ||
| Theorem | hashp1i 14375 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 = suc 𝐴 & ⊢ (♯‘𝐴) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝐵) = 𝑁 | ||
| Theorem | hash1 14376 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (♯‘1o) = 1 | ||
| Theorem | hash2 14377 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (♯‘2o) = 2 | ||
| Theorem | hash3 14378 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (♯‘3o) = 3 | ||
| Theorem | hash4 14379 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (♯‘4o) = 4 | ||
| Theorem | pr0hash2ex 14380 | There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.) |
| ⊢ (♯‘{∅, {∅}}) = 2 | ||
| Theorem | hashss 14381 | The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | ||
| Theorem | prsshashgt1 14382 | The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) | ||
| Theorem | hashin 14383 | The size of the intersection of a set and a class is less than or equal to the size of the set. (Contributed by AV, 4-Jan-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (♯‘(𝐴 ∩ 𝐵)) ≤ (♯‘𝐴)) | ||
| Theorem | hashssdif 14384 | The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) | ||
| Theorem | hashdif 14385 | The size of the difference of a finite set and another set is the first set's size minus that of the intersection of both. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
| ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | hashdifsn 14386 | The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) | ||
| Theorem | hashdifpr 14387 | The size of the difference of a finite set and a proper pair of its elements is the set's size minus 2. (Contributed by AV, 16-Dec-2020.) |
| ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) | ||
| Theorem | hashsn01 14388 | The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021.) |
| ⊢ ((♯‘{𝐴}) = 0 ∨ (♯‘{𝐴}) = 1) | ||
| Theorem | hashsnle1 14389 | The size of a singleton is less than or equal to 1. (Contributed by AV, 23-Feb-2021.) |
| ⊢ (♯‘{𝐴}) ≤ 1 | ||
| Theorem | hashsnlei 14390 | Get an upper bound on a concretely specified finite set. Base case: singleton set. (Contributed by Mario Carneiro, 11-Feb-2015.) (Proof shortened by AV, 23-Feb-2021.) |
| ⊢ ({𝐴} ∈ Fin ∧ (♯‘{𝐴}) ≤ 1) | ||
| Theorem | hash1snb 14391* | The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.) |
| ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) | ||
| Theorem | euhash1 14392* | The size of a set is 1 in terms of existential uniqueness. (Contributed by Alexander van der Vekens, 8-Feb-2018.) |
| ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃!𝑎 𝑎 ∈ 𝑉)) | ||
| Theorem | hash1n0 14393 | If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) = 1) → 𝐴 ≠ ∅) | ||
| Theorem | hashgt12el 14394* | In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏) | ||
| Theorem | hashgt12el2 14395* | In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 𝐴 ≠ 𝑏) | ||
| Theorem | hashgt23el 14396* | A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) | ||
| Theorem | hashunlei 14397 | Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝐶 = (𝐴 ∪ 𝐵) & ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) & ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐾 + 𝑀) = 𝑁 ⇒ ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) | ||
| Theorem | hashsslei 14398 | Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁) & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁) | ||
| Theorem | hashfz 14399 | Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) | ||
| Theorem | fzsdom2 14400 | Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2015.) |
| ⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |