![]() |
Metamath
Proof Explorer Theorem List (p. 144 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | leexp2d 14301 | Ordering law for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → (𝑀 ≤ 𝑁 ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑁))) | ||
Theorem | expcand 14302 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → (𝐴↑𝑀) = (𝐴↑𝑁)) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
Theorem | leexp2ad 14303 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) | ||
Theorem | leexp2rd 14304 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) | ||
Theorem | lt2sqd 14305 | The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
Theorem | le2sqd 14306 | The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | sq11d 14307 | The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | ltexp1d 14308 | Elevating to a positive power does not affect inequalities. Similar to ltmul1d 13140 for exponentiation of positive reals. (Contributed by Steven Nguyen, 22-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) | ||
Theorem | ltexp1dd 14309 | Raising both sides of 'less than' to the same positive integer preserves ordering. (Contributed by Steven Nguyen, 24-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) < (𝐵↑𝑁)) | ||
Theorem | exp11nnd 14310 | The function elevating nonnegative reals to a positive integer is one-to-one. Similar to sq11d 14307 for positive real bases and positive integer exponents. The base cannot be generalized much further, since if 𝑁 is even then we have 𝐴↑𝑁 = -𝐴↑𝑁. (Contributed by SN, 14-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulsubdivbinom2 14311 | The square of a binomial with factor minus a number divided by a nonzero number. (Contributed by AV, 19-Jul-2021.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶))) | ||
Theorem | muldivbinom2 14312 | The square of a binomial with factor divided by a nonzero number. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((((𝐶 · 𝐴) + 𝐵)↑2) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶))) | ||
Theorem | sq10 14313 | The square of 10 is 100. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ (;10↑2) = ;;100 | ||
Theorem | sq10e99m1 14314 | The square of 10 is 99 plus 1. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ (;10↑2) = (;99 + 1) | ||
Theorem | 3dec 14315 | A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) | ||
Theorem | nn0le2msqi 14316 | The square function on nonnegative integers is monotonic. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)) | ||
Theorem | nn0opthlem1 14317 | A rather pretty lemma for nn0opthi 14319. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶)) | ||
Theorem | nn0opthlem2 14318 | Lemma for nn0opthi 14319. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 ⇒ ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) | ||
Theorem | nn0opthi 14319 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 4655 that works for any set. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Scott Fenton, 8-Sep-2010.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 ⇒ ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | nn0opth2i 14320 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthi 14319. (Contributed by NM, 22-Jul-2004.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 ⇒ ⊢ ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | nn0opth2 14321 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthi 14319. (Contributed by NM, 22-Jul-2004.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Syntax | cfa 14322 | Extend class notation to include the factorial of nonnegative integers. |
class ! | ||
Definition | df-fac 14323 | Define the factorial function on nonnegative integers. For example, (!‘5) = 120 because 1 · 2 · 3 · 4 · 5 = 120 (ex-fac 30483). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.) |
⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | ||
Theorem | facnn 14324 | Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | ||
Theorem | fac0 14325 | The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (!‘0) = 1 | ||
Theorem | fac1 14326 | The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (!‘1) = 1 | ||
Theorem | facp1 14327 | The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) | ||
Theorem | fac2 14328 | The factorial of 2. (Contributed by NM, 17-Mar-2005.) |
⊢ (!‘2) = 2 | ||
Theorem | fac3 14329 | The factorial of 3. (Contributed by NM, 17-Mar-2005.) |
⊢ (!‘3) = 6 | ||
Theorem | fac4 14330 | The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (!‘4) = ;24 | ||
Theorem | facnn2 14331 | Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004.) |
⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | ||
Theorem | faccl 14332 | Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | ||
Theorem | faccld 14333 | Closure of the factorial function, deduction version of faccl 14332. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) | ||
Theorem | facmapnn 14334 | The factorial function restricted to positive integers is a mapping from the positive integers to the positive integers. (Contributed by AV, 8-Aug-2020.) |
⊢ (𝑛 ∈ ℕ ↦ (!‘𝑛)) ∈ (ℕ ↑m ℕ) | ||
Theorem | facne0 14335 | The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0) | ||
Theorem | facdiv 14336 | A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) | ||
Theorem | facndiv 14337 | No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) | ||
Theorem | facwordi 14338 | Ordering property of factorial. (Contributed by NM, 9-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (!‘𝑀) ≤ (!‘𝑁)) | ||
Theorem | faclbnd 14339 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
Theorem | faclbnd2 14340 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) | ||
Theorem | faclbnd3 14341 | A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑𝑁) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
Theorem | faclbnd4lem1 14342 | Lemma for faclbnd4 14346. Prepare the induction step. (Contributed by NM, 20-Dec-2005.) |
⊢ 𝑁 ∈ ℕ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 ⇒ ⊢ ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁))) | ||
Theorem | faclbnd4lem2 14343 | Lemma for faclbnd4 14346. Use the weak deduction theorem to convert the hypotheses of faclbnd4lem1 14342 to antecedents. (Contributed by NM, 23-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁)))) | ||
Theorem | faclbnd4lem3 14344 | Lemma for faclbnd4 14346. The 𝑁 = 0 case. (Contributed by NM, 23-Dec-2005.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁↑𝐾) · (𝑀↑𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) | ||
Theorem | faclbnd4lem4 14345 | Lemma for faclbnd4 14346. Prove the 0 < 𝑁 case by induction on 𝐾. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((𝑁↑𝐾) · (𝑀↑𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) | ||
Theorem | faclbnd4 14346 | Variant of faclbnd5 14347 providing a non-strict lower bound. (Contributed by NM, 23-Dec-2005.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((𝑁↑𝐾) · (𝑀↑𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))) | ||
Theorem | faclbnd5 14347 | The factorial function grows faster than powers and exponentiations. If we consider 𝐾 and 𝑀 to be constants, the right-hand side of the inequality is a constant times 𝑁-factorial. (Contributed by NM, 24-Dec-2005.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ) → ((𝑁↑𝐾) · (𝑀↑𝑁)) < ((2 · ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾)))) · (!‘𝑁))) | ||
Theorem | faclbnd6 14348 | Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))) | ||
Theorem | facubnd 14349 | An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁↑𝑁)) | ||
Theorem | facavg 14350 | The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))) | ||
Syntax | cbc 14351 | Extend class notation to include the binomial coefficient operation (combinatorial choose operation). |
class C | ||
Definition | df-bc 14352* |
Define the binomial coefficient operation. For example,
(5C3) = 10 (ex-bc 30484).
In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘 ≤ 𝑛 does not hold. (Contributed by NM, 10-Jul-2005.) |
⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) | ||
Theorem | bcval 14353 | Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾 ≤ 𝑁 does not hold. See bcval2 14354 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) | ||
Theorem | bcval2 14354 | Value of the binomial coefficient, 𝑁 choose 𝐾, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) | ||
Theorem | bcval3 14355 | Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | ||
Theorem | bcval4 14356 | Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) | ||
Theorem | bcrpcl 14357 | Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 14372.) (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) | ||
Theorem | bccmpl 14358 | "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁 − 𝐾))) | ||
Theorem | bcn0 14359 | 𝑁 choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C0) = 1) | ||
Theorem | bc0k 14360 | The binomial coefficient " 0 choose 𝐾 " is 0 for a positive integer K. Note that (0C0) = 1 (see bcn0 14359). (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
⊢ (𝐾 ∈ ℕ → (0C𝐾) = 0) | ||
Theorem | bcnn 14361 | 𝑁 choose 𝑁 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1) | ||
Theorem | bcn1 14362 | Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) | ||
Theorem | bcnp1n 14363 | Binomial coefficient: 𝑁 + 1 choose 𝑁. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C𝑁) = (𝑁 + 1)) | ||
Theorem | bcm1k 14364 | The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾))) | ||
Theorem | bcp1n 14365 | The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)))) | ||
Theorem | bcp1nk 14366 | The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1)))) | ||
Theorem | bcval5 14367 | Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁 − 𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁 − 𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾))) | ||
Theorem | bcn2 14368 | Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2)) | ||
Theorem | bcp1m1 14369 | Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) | ||
Theorem | bcpasc 14370 | Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) | ||
Theorem | bccl 14371 | A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0) | ||
Theorem | bccl2 14372 | A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ) | ||
Theorem | bcn2m1 14373 | Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) | ||
Theorem | bcn2p1 14374 | Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2)) | ||
Theorem | permnn 14375 | The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | ||
Theorem | bcnm1 14376 | The binomial coefficient of (𝑁 − 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁) | ||
Theorem | 4bc3eq4 14377 | The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.) |
⊢ (4C3) = 4 | ||
Theorem | 4bc2eq6 14378 | The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
⊢ (4C2) = 6 | ||
Syntax | chash 14379 | Extend the definition of a class to include the set size function. |
class ♯ | ||
Definition | df-hash 14380 | Define the set size function ♯, which gives the cardinality of a finite set as a member of ℕ0, and assigns all infinite sets the value +∞. For example, (♯‘{0, 1, 2}) = 3 (ex-hash 30485). (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) | ||
Theorem | hashkf 14381 | The finite part of the size function maps all finite sets to their cardinality, as members of ℕ0. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) & ⊢ 𝐾 = (𝐺 ∘ card) ⇒ ⊢ 𝐾:Fin⟶ℕ0 | ||
Theorem | hashgval 14382* | The value of the ♯ function in terms of the mapping 𝐺 from ω to ℕ0. The proof avoids the use of ax-ac 10528. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 26-Dec-2014.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (♯‘𝐴)) | ||
Theorem | hashginv 14383* | The converse of 𝐺 maps the size function's value to card. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ (𝐴 ∈ Fin → (◡𝐺‘(♯‘𝐴)) = (card‘𝐴)) | ||
Theorem | hashinf 14384 | The value of the ♯ function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | ||
Theorem | hashbnd 14385 | If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) | ||
Theorem | hashfxnn0 14386 | The size function is a function into the extended nonnegative integers. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by AV, 10-Dec-2020.) |
⊢ ♯:V⟶ℕ0* | ||
Theorem | hashf 14387 | The size function maps all finite sets to their cardinality, as members of ℕ0, and infinite sets to +∞. TODO-AV: mark as OBSOLETE and replace it by hashfxnn0 14386? (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 13-Jul-2014.) (Proof shortened by AV, 24-Oct-2021.) |
⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | ||
Theorem | hashxnn0 14388 | The value of the hash function for a set is an extended nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 10-Dec-2020.) |
⊢ (𝑀 ∈ 𝑉 → (♯‘𝑀) ∈ ℕ0*) | ||
Theorem | hashresfn 14389 | Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
⊢ (♯ ↾ 𝐴) Fn 𝐴 | ||
Theorem | dmhashres 14390 | Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
⊢ dom (♯ ↾ 𝐴) = 𝐴 | ||
Theorem | hashnn0pnf 14391 | The value of the hash function for a set is either a nonnegative integer or positive infinity. TODO-AV: mark as OBSOLETE and replace it by hashxnn0 14388? (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) | ||
Theorem | hashnnn0genn0 14392 | If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
⊢ ((𝑀 ∈ 𝑉 ∧ (♯‘𝑀) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀)) | ||
Theorem | hashnemnf 14393 | The size of a set is never minus infinity. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘𝐴) ≠ -∞) | ||
Theorem | hashv01gt1 14394 | The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.) |
⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | ||
Theorem | hashfz1 14395 | The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | ||
Theorem | hashen 14396 | Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
Theorem | hasheni 14397 | Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015.) |
⊢ (𝐴 ≈ 𝐵 → (♯‘𝐴) = (♯‘𝐵)) | ||
Theorem | hasheqf1o 14398* | The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
Theorem | fiinfnf1o 14399* | There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
Theorem | hasheqf1oi 14400* | The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017.) (Revised by AV, 4-May-2021.) |
⊢ (𝐴 ∈ 𝑉 → (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (♯‘𝐴) = (♯‘𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |