![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fofi | Structured version Visualization version GIF version |
Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
fofi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodomfi 9348 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | |
2 | domfi 9227 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
3 | 1, 2 | syldan 591 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 –onto→wfo 6561 ≼ cdom 8982 Fincfn 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-dom 8986 df-fin 8988 |
This theorem is referenced by: f1fi 9350 imafi 9351 f1opwfi 9394 indexfi 9398 intrnfi 9454 infpwfien 10100 ttukeylem6 10552 fseqsupcl 14015 fiinfnf1o 14386 vdwlem6 17020 0ram2 17055 0ramcl 17057 mplsubrglem 22042 tgcmp 23425 hauscmplem 23430 1stcfb 23469 comppfsc 23556 1stckgenlem 23577 ptcnplem 23645 txtube 23664 txcmplem1 23665 tmdgsum2 24120 tsmsf1o 24169 tsmsxplem1 24177 ovolicc2lem4 25569 i1fadd 25744 i1fmul 25745 itg1addlem4 25748 itg1addlem4OLD 25749 i1fmulc 25753 mbfi1fseqlem4 25768 limciun 25944 edgusgrnbfin 29405 fsupprnfi 32707 erdszelem2 35177 mvrsfpw 35491 itg2addnclem2 37659 istotbnd3 37758 sstotbnd 37762 prdsbnd 37780 cntotbnd 37783 heiborlem1 37798 heibor 37808 lmhmfgima 43073 |
Copyright terms: Public domain | W3C validator |