Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fofi | Structured version Visualization version GIF version |
Description: If a function has a finite domain, its range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
fofi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodomfi 9068 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | |
2 | domfi 8955 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
3 | 1, 2 | syldan 591 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 class class class wbr 5079 –onto→wfo 6429 ≼ cdom 8712 Fincfn 8714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-om 7705 df-1o 8286 df-er 8479 df-en 8715 df-dom 8716 df-fin 8718 |
This theorem is referenced by: f1fi 9082 imafiALT 9088 f1opwfi 9099 indexfi 9103 intrnfi 9151 infpwfien 9817 ttukeylem6 10269 fseqsupcl 13693 fiinfnf1o 14060 vdwlem6 16683 0ram2 16718 0ramcl 16720 mplsubrglem 21206 tgcmp 22548 hauscmplem 22553 1stcfb 22592 comppfsc 22679 1stckgenlem 22700 ptcnplem 22768 txtube 22787 txcmplem1 22788 tmdgsum2 23243 tsmsf1o 23292 tsmsxplem1 23300 ovolicc2lem4 24680 i1fadd 24855 i1fmul 24856 itg1addlem4 24859 itg1addlem4OLD 24860 i1fmulc 24864 mbfi1fseqlem4 24879 limciun 25054 edgusgrnbfin 27736 fsupprnfi 31020 erdszelem2 33148 mvrsfpw 33462 itg2addnclem2 35823 istotbnd3 35923 sstotbnd 35927 prdsbnd 35945 cntotbnd 35948 heiborlem1 35963 heibor 35973 lmhmfgima 40904 |
Copyright terms: Public domain | W3C validator |