| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofi | Structured version Visualization version GIF version | ||
| Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
| Ref | Expression |
|---|---|
| fofi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodomfi 9261 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | |
| 2 | domfi 9153 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
| 3 | 1, 2 | syldan 591 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 –onto→wfo 6509 ≼ cdom 8916 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-dom 8920 df-fin 8922 |
| This theorem is referenced by: f1fi 9263 imafi 9264 f1opwfi 9307 indexfi 9311 intrnfi 9367 infpwfien 10015 ttukeylem6 10467 fseqsupcl 13942 fiinfnf1o 14315 vdwlem6 16957 0ram2 16992 0ramcl 16994 mplsubrglem 21913 tgcmp 23288 hauscmplem 23293 1stcfb 23332 comppfsc 23419 1stckgenlem 23440 ptcnplem 23508 txtube 23527 txcmplem1 23528 tmdgsum2 23983 tsmsf1o 24032 tsmsxplem1 24040 ovolicc2lem4 25421 i1fadd 25596 i1fmul 25597 itg1addlem4 25600 i1fmulc 25604 mbfi1fseqlem4 25619 limciun 25795 edgusgrnbfin 29300 fsupprnfi 32615 erdszelem2 35179 mvrsfpw 35493 itg2addnclem2 37666 istotbnd3 37765 sstotbnd 37769 prdsbnd 37787 cntotbnd 37790 heiborlem1 37805 heibor 37815 lmhmfgima 43073 |
| Copyright terms: Public domain | W3C validator |