MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofi Structured version   Visualization version   GIF version

Theorem fofi 8494
Description: If a function has a finite domain, its range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.)
Assertion
Ref Expression
fofi ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)

Proof of Theorem fofi
StepHypRef Expression
1 fodomfi 8481 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
2 domfi 8423 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
31, 2syldan 586 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157   class class class wbr 4843  ontowfo 6099  cdom 8193  Fincfn 8195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-om 7300  df-1o 7799  df-er 7982  df-en 8196  df-dom 8197  df-fin 8199
This theorem is referenced by:  f1fi  8495  imafi  8501  f1opwfi  8512  indexfi  8516  intrnfi  8564  infpwfien  9171  ttukeylem6  9624  fseqsupcl  13031  fiinfnf1o  13390  vdwlem6  16023  0ram2  16058  0ramcl  16060  mplsubrglem  19762  tgcmp  21533  hauscmplem  21538  1stcfb  21577  comppfsc  21664  1stckgenlem  21685  ptcnplem  21753  txtube  21772  txcmplem1  21773  tmdgsum2  22228  tsmsf1o  22276  tsmsxplem1  22284  ovolicc2lem4  23628  i1fadd  23803  i1fmul  23804  itg1addlem4  23807  i1fmulc  23811  mbfi1fseqlem4  23826  limciun  23999  edgusgrnbfin  26617  erdszelem2  31691  mvrsfpw  31920  itg2addnclem2  33950  istotbnd3  34057  sstotbnd  34061  prdsbnd  34079  cntotbnd  34082  heiborlem1  34097  heibor  34107  lmhmfgima  38439
  Copyright terms: Public domain W3C validator