| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofi | Structured version Visualization version GIF version | ||
| Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
| Ref | Expression |
|---|---|
| fofi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodomfi 9203 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | |
| 2 | domfi 9105 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
| 3 | 1, 2 | syldan 591 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5093 –onto→wfo 6484 ≼ cdom 8873 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-en 8876 df-dom 8877 df-fin 8879 |
| This theorem is referenced by: f1fi 9205 imafi 9206 f1opwfi 9247 indexfi 9251 intrnfi 9307 infpwfien 9960 ttukeylem6 10412 fseqsupcl 13886 fiinfnf1o 14259 vdwlem6 16900 0ram2 16935 0ramcl 16937 mplsubrglem 21942 tgcmp 23317 hauscmplem 23322 1stcfb 23361 comppfsc 23448 1stckgenlem 23469 ptcnplem 23537 txtube 23556 txcmplem1 23557 tmdgsum2 24012 tsmsf1o 24061 tsmsxplem1 24069 ovolicc2lem4 25449 i1fadd 25624 i1fmul 25625 itg1addlem4 25628 i1fmulc 25632 mbfi1fseqlem4 25647 limciun 25823 edgusgrnbfin 29353 fsupprnfi 32677 erdszelem2 35257 mvrsfpw 35571 itg2addnclem2 37732 istotbnd3 37831 sstotbnd 37835 prdsbnd 37853 cntotbnd 37856 heiborlem1 37871 heibor 37881 lmhmfgima 43201 |
| Copyright terms: Public domain | W3C validator |