MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofi Structured version   Visualization version   GIF version

Theorem fofi 9379
Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.)
Assertion
Ref Expression
fofi ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)

Proof of Theorem fofi
StepHypRef Expression
1 fodomfi 9378 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
2 domfi 9255 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
31, 2syldan 590 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5166  ontowfo 6571  cdom 9001  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007
This theorem is referenced by:  f1fi  9380  imafi  9381  f1opwfi  9426  indexfi  9430  intrnfi  9485  infpwfien  10131  ttukeylem6  10583  fseqsupcl  14028  fiinfnf1o  14399  vdwlem6  17033  0ram2  17068  0ramcl  17070  mplsubrglem  22047  tgcmp  23430  hauscmplem  23435  1stcfb  23474  comppfsc  23561  1stckgenlem  23582  ptcnplem  23650  txtube  23669  txcmplem1  23670  tmdgsum2  24125  tsmsf1o  24174  tsmsxplem1  24182  ovolicc2lem4  25574  i1fadd  25749  i1fmul  25750  itg1addlem4  25753  itg1addlem4OLD  25754  i1fmulc  25758  mbfi1fseqlem4  25773  limciun  25949  edgusgrnbfin  29408  fsupprnfi  32704  erdszelem2  35160  mvrsfpw  35474  itg2addnclem2  37632  istotbnd3  37731  sstotbnd  37735  prdsbnd  37753  cntotbnd  37756  heiborlem1  37771  heibor  37781  lmhmfgima  43041
  Copyright terms: Public domain W3C validator