MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofi Structured version   Visualization version   GIF version

Theorem fofi 9197
Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.)
Assertion
Ref Expression
fofi ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)

Proof of Theorem fofi
StepHypRef Expression
1 fodomfi 9196 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
2 domfi 9098 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
31, 2syldan 591 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111   class class class wbr 5091  ontowfo 6479  cdom 8867  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873
This theorem is referenced by:  f1fi  9198  imafi  9199  f1opwfi  9240  indexfi  9244  intrnfi  9300  infpwfien  9950  ttukeylem6  10402  fseqsupcl  13881  fiinfnf1o  14254  vdwlem6  16895  0ram2  16930  0ramcl  16932  mplsubrglem  21939  tgcmp  23314  hauscmplem  23319  1stcfb  23358  comppfsc  23445  1stckgenlem  23466  ptcnplem  23534  txtube  23553  txcmplem1  23554  tmdgsum2  24009  tsmsf1o  24058  tsmsxplem1  24066  ovolicc2lem4  25446  i1fadd  25621  i1fmul  25622  itg1addlem4  25625  i1fmulc  25629  mbfi1fseqlem4  25644  limciun  25820  edgusgrnbfin  29349  fsupprnfi  32668  erdszelem2  35224  mvrsfpw  35538  itg2addnclem2  37711  istotbnd3  37810  sstotbnd  37814  prdsbnd  37832  cntotbnd  37835  heiborlem1  37850  heibor  37860  lmhmfgima  43116
  Copyright terms: Public domain W3C validator