Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fofi | Structured version Visualization version GIF version |
Description: If a function has a finite domain, its range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
fofi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodomfi 9092 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | |
2 | domfi 8975 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
3 | 1, 2 | syldan 591 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 –onto→wfo 6431 ≼ cdom 8731 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-fin 8737 |
This theorem is referenced by: f1fi 9106 imafiALT 9112 f1opwfi 9123 indexfi 9127 intrnfi 9175 infpwfien 9818 ttukeylem6 10270 fseqsupcl 13697 fiinfnf1o 14064 vdwlem6 16687 0ram2 16722 0ramcl 16724 mplsubrglem 21210 tgcmp 22552 hauscmplem 22557 1stcfb 22596 comppfsc 22683 1stckgenlem 22704 ptcnplem 22772 txtube 22791 txcmplem1 22792 tmdgsum2 23247 tsmsf1o 23296 tsmsxplem1 23304 ovolicc2lem4 24684 i1fadd 24859 i1fmul 24860 itg1addlem4 24863 itg1addlem4OLD 24864 i1fmulc 24868 mbfi1fseqlem4 24883 limciun 25058 edgusgrnbfin 27740 fsupprnfi 31026 erdszelem2 33154 mvrsfpw 33468 itg2addnclem2 35829 istotbnd3 35929 sstotbnd 35933 prdsbnd 35951 cntotbnd 35954 heiborlem1 35969 heibor 35979 lmhmfgima 40909 |
Copyright terms: Public domain | W3C validator |