| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofi | Structured version Visualization version GIF version | ||
| Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
| Ref | Expression |
|---|---|
| fofi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodomfi 9268 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | |
| 2 | domfi 9159 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
| 3 | 1, 2 | syldan 591 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 –onto→wfo 6512 ≼ cdom 8919 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-fin 8925 |
| This theorem is referenced by: f1fi 9270 imafi 9271 f1opwfi 9314 indexfi 9318 intrnfi 9374 infpwfien 10022 ttukeylem6 10474 fseqsupcl 13949 fiinfnf1o 14322 vdwlem6 16964 0ram2 16999 0ramcl 17001 mplsubrglem 21920 tgcmp 23295 hauscmplem 23300 1stcfb 23339 comppfsc 23426 1stckgenlem 23447 ptcnplem 23515 txtube 23534 txcmplem1 23535 tmdgsum2 23990 tsmsf1o 24039 tsmsxplem1 24047 ovolicc2lem4 25428 i1fadd 25603 i1fmul 25604 itg1addlem4 25607 i1fmulc 25611 mbfi1fseqlem4 25626 limciun 25802 edgusgrnbfin 29307 fsupprnfi 32622 erdszelem2 35186 mvrsfpw 35500 itg2addnclem2 37673 istotbnd3 37772 sstotbnd 37776 prdsbnd 37794 cntotbnd 37797 heiborlem1 37812 heibor 37822 lmhmfgima 43080 |
| Copyright terms: Public domain | W3C validator |