MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofi Structured version   Visualization version   GIF version

Theorem fofi 9269
Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.)
Assertion
Ref Expression
fofi ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)

Proof of Theorem fofi
StepHypRef Expression
1 fodomfi 9268 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
2 domfi 9159 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
31, 2syldan 591 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5110  ontowfo 6512  cdom 8919  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-dom 8923  df-fin 8925
This theorem is referenced by:  f1fi  9270  imafi  9271  f1opwfi  9314  indexfi  9318  intrnfi  9374  infpwfien  10022  ttukeylem6  10474  fseqsupcl  13949  fiinfnf1o  14322  vdwlem6  16964  0ram2  16999  0ramcl  17001  mplsubrglem  21920  tgcmp  23295  hauscmplem  23300  1stcfb  23339  comppfsc  23426  1stckgenlem  23447  ptcnplem  23515  txtube  23534  txcmplem1  23535  tmdgsum2  23990  tsmsf1o  24039  tsmsxplem1  24047  ovolicc2lem4  25428  i1fadd  25603  i1fmul  25604  itg1addlem4  25607  i1fmulc  25611  mbfi1fseqlem4  25626  limciun  25802  edgusgrnbfin  29307  fsupprnfi  32622  erdszelem2  35186  mvrsfpw  35500  itg2addnclem2  37673  istotbnd3  37772  sstotbnd  37776  prdsbnd  37794  cntotbnd  37797  heiborlem1  37812  heibor  37822  lmhmfgima  43080
  Copyright terms: Public domain W3C validator