| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofi | Structured version Visualization version GIF version | ||
| Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
| Ref | Expression |
|---|---|
| fofi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodomfi 9322 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | |
| 2 | domfi 9203 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
| 3 | 1, 2 | syldan 591 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 –onto→wfo 6529 ≼ cdom 8957 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-dom 8961 df-fin 8963 |
| This theorem is referenced by: f1fi 9324 imafi 9325 f1opwfi 9368 indexfi 9372 intrnfi 9428 infpwfien 10076 ttukeylem6 10528 fseqsupcl 13995 fiinfnf1o 14368 vdwlem6 17006 0ram2 17041 0ramcl 17043 mplsubrglem 21964 tgcmp 23339 hauscmplem 23344 1stcfb 23383 comppfsc 23470 1stckgenlem 23491 ptcnplem 23559 txtube 23578 txcmplem1 23579 tmdgsum2 24034 tsmsf1o 24083 tsmsxplem1 24091 ovolicc2lem4 25473 i1fadd 25648 i1fmul 25649 itg1addlem4 25652 i1fmulc 25656 mbfi1fseqlem4 25671 limciun 25847 edgusgrnbfin 29352 fsupprnfi 32669 erdszelem2 35214 mvrsfpw 35528 itg2addnclem2 37696 istotbnd3 37795 sstotbnd 37799 prdsbnd 37817 cntotbnd 37820 heiborlem1 37835 heibor 37845 lmhmfgima 43108 |
| Copyright terms: Public domain | W3C validator |