Proof of Theorem flfcnp
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simprl 770 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) | 
| 2 |  | flfval 23999 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | 
| 3 | 2 | adantr 480 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | 
| 4 | 1, 3 | eleqtrd 2842 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | 
| 5 |  | simprr 772 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴)) | 
| 6 |  | cnpflfi 24008 | . . 3
⊢ ((𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐺‘𝐴) ∈ ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺)) | 
| 7 | 4, 5, 6 | syl2anc 584 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐺‘𝐴) ∈ ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺)) | 
| 8 |  | cnptop2 23252 | . . . . . . . 8
⊢ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top) | 
| 9 | 8 | ad2antll 729 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐾 ∈ Top) | 
| 10 |  | toptopon2 22925 | . . . . . . 7
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 11 | 9, 10 | sylib 218 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 12 |  | toponmax 22933 | . . . . . 6
⊢ (𝐾 ∈ (TopOn‘∪ 𝐾)
→ ∪ 𝐾 ∈ 𝐾) | 
| 13 | 11, 12 | syl 17 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ∪
𝐾 ∈ 𝐾) | 
| 14 |  | simpl1 1191 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 15 |  | toponmax 22933 | . . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | 
| 16 | 14, 15 | syl 17 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝑋 ∈ 𝐽) | 
| 17 |  | simpl2 1192 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐿 ∈ (Fil‘𝑌)) | 
| 18 |  | filfbas 23857 | . . . . . 6
⊢ (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) | 
| 19 | 17, 18 | syl 17 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐿 ∈ (fBas‘𝑌)) | 
| 20 |  | cnpf2 23259 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐺:𝑋⟶∪ 𝐾) | 
| 21 | 14, 11, 5, 20 | syl3anc 1372 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐺:𝑋⟶∪ 𝐾) | 
| 22 |  | simpl3 1193 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐹:𝑌⟶𝑋) | 
| 23 |  | fmco 23970 | . . . . 5
⊢ (((∪ 𝐾
∈ 𝐾 ∧ 𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (fBas‘𝑌)) ∧ (𝐺:𝑋⟶∪ 𝐾 ∧ 𝐹:𝑌⟶𝑋)) → ((∪
𝐾 FilMap (𝐺 ∘ 𝐹))‘𝐿) = ((∪ 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿))) | 
| 24 | 13, 16, 19, 21, 22, 23 | syl32anc 1379 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((∪
𝐾 FilMap (𝐺 ∘ 𝐹))‘𝐿) = ((∪ 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿))) | 
| 25 | 24 | oveq2d 7448 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐾 fLim ((∪ 𝐾 FilMap (𝐺 ∘ 𝐹))‘𝐿)) = (𝐾 fLim ((∪ 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿)))) | 
| 26 |  | fco 6759 | . . . . 5
⊢ ((𝐺:𝑋⟶∪ 𝐾 ∧ 𝐹:𝑌⟶𝑋) → (𝐺 ∘ 𝐹):𝑌⟶∪ 𝐾) | 
| 27 | 21, 22, 26 | syl2anc 584 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐺 ∘ 𝐹):𝑌⟶∪ 𝐾) | 
| 28 |  | flfval 23999 | . . . 4
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐿 ∈
(Fil‘𝑌) ∧ (𝐺 ∘ 𝐹):𝑌⟶∪ 𝐾) → ((𝐾 fLimf 𝐿)‘(𝐺 ∘ 𝐹)) = (𝐾 fLim ((∪ 𝐾 FilMap (𝐺 ∘ 𝐹))‘𝐿))) | 
| 29 | 11, 17, 27, 28 | syl3anc 1372 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝐾 fLimf 𝐿)‘(𝐺 ∘ 𝐹)) = (𝐾 fLim ((∪ 𝐾 FilMap (𝐺 ∘ 𝐹))‘𝐿))) | 
| 30 |  | fmfil 23953 | . . . . 5
⊢ ((𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) | 
| 31 | 16, 19, 22, 30 | syl3anc 1372 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) | 
| 32 |  | flfval 23999 | . . . 4
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋) ∧ 𝐺:𝑋⟶∪ 𝐾) → ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺) = (𝐾 fLim ((∪ 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿)))) | 
| 33 | 11, 31, 21, 32 | syl3anc 1372 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺) = (𝐾 fLim ((∪ 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿)))) | 
| 34 | 25, 29, 33 | 3eqtr4d 2786 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝐾 fLimf 𝐿)‘(𝐺 ∘ 𝐹)) = ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺)) | 
| 35 | 7, 34 | eleqtrrd 2843 | 1
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐺‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘(𝐺 ∘ 𝐹))) |