MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcnp Structured version   Visualization version   GIF version

Theorem flfcnp 23889
Description: A continuous function preserves filter limits. (Contributed by Mario Carneiro, 18-Sep-2015.)
Assertion
Ref Expression
flfcnp (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐺𝐴) ∈ ((𝐾 fLimf 𝐿)‘(𝐺𝐹)))

Proof of Theorem flfcnp
StepHypRef Expression
1 simprl 770 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
2 flfval 23875 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
32adantr 480 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
41, 3eleqtrd 2830 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
5 simprr 772 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))
6 cnpflfi 23884 . . 3 ((𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐺𝐴) ∈ ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺))
74, 5, 6syl2anc 584 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐺𝐴) ∈ ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺))
8 cnptop2 23128 . . . . . . . 8 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top)
98ad2antll 729 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐾 ∈ Top)
10 toptopon2 22803 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
119, 10sylib 218 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐾 ∈ (TopOn‘ 𝐾))
12 toponmax 22811 . . . . . 6 (𝐾 ∈ (TopOn‘ 𝐾) → 𝐾𝐾)
1311, 12syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐾𝐾)
14 simpl1 1192 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
15 toponmax 22811 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1614, 15syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝑋𝐽)
17 simpl2 1193 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐿 ∈ (Fil‘𝑌))
18 filfbas 23733 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
1917, 18syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐿 ∈ (fBas‘𝑌))
20 cnpf2 23135 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐺:𝑋 𝐾)
2114, 11, 5, 20syl3anc 1373 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐺:𝑋 𝐾)
22 simpl3 1194 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → 𝐹:𝑌𝑋)
23 fmco 23846 . . . . 5 ((( 𝐾𝐾𝑋𝐽𝐿 ∈ (fBas‘𝑌)) ∧ (𝐺:𝑋 𝐾𝐹:𝑌𝑋)) → (( 𝐾 FilMap (𝐺𝐹))‘𝐿) = (( 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿)))
2413, 16, 19, 21, 22, 23syl32anc 1380 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (( 𝐾 FilMap (𝐺𝐹))‘𝐿) = (( 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿)))
2524oveq2d 7365 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐾 fLim (( 𝐾 FilMap (𝐺𝐹))‘𝐿)) = (𝐾 fLim (( 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿))))
26 fco 6676 . . . . 5 ((𝐺:𝑋 𝐾𝐹:𝑌𝑋) → (𝐺𝐹):𝑌 𝐾)
2721, 22, 26syl2anc 584 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐺𝐹):𝑌 𝐾)
28 flfval 23875 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ (𝐺𝐹):𝑌 𝐾) → ((𝐾 fLimf 𝐿)‘(𝐺𝐹)) = (𝐾 fLim (( 𝐾 FilMap (𝐺𝐹))‘𝐿)))
2911, 17, 27, 28syl3anc 1373 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝐾 fLimf 𝐿)‘(𝐺𝐹)) = (𝐾 fLim (( 𝐾 FilMap (𝐺𝐹))‘𝐿)))
30 fmfil 23829 . . . . 5 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
3116, 19, 22, 30syl3anc 1373 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
32 flfval 23875 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋) ∧ 𝐺:𝑋 𝐾) → ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺) = (𝐾 fLim (( 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿))))
3311, 31, 21, 32syl3anc 1373 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺) = (𝐾 fLim (( 𝐾 FilMap 𝐺)‘((𝑋 FilMap 𝐹)‘𝐿))))
3425, 29, 333eqtr4d 2774 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → ((𝐾 fLimf 𝐿)‘(𝐺𝐹)) = ((𝐾 fLimf ((𝑋 FilMap 𝐹)‘𝐿))‘𝐺))
357, 34eleqtrrd 2831 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐺𝐴) ∈ ((𝐾 fLimf 𝐿)‘(𝐺𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   cuni 4858  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  fBascfbas 21249  Topctop 22778  TopOnctopon 22795   CnP ccnp 23110  Filcfil 23730   FilMap cfm 23818   fLim cflim 23819   fLimf cflf 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-ntr 22905  df-nei 22983  df-cnp 23113  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825
This theorem is referenced by:  flfcnp2  23892  tsmsmhm  24031
  Copyright terms: Public domain W3C validator