MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdeg0 Structured version   Visualization version   GIF version

Theorem mdeg0 26027
Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdeg0.d 𝐷 = (𝐼 mDeg 𝑅)
mdeg0.p 𝑃 = (𝐼 mPoly 𝑅)
mdeg0.z 0 = (0g𝑃)
Assertion
Ref Expression
mdeg0 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)

Proof of Theorem mdeg0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringgrp 20198 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 mdeg0.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
32mplgrp 21977 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
41, 3sylan2 593 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑃 ∈ Grp)
5 eqid 2735 . . . 4 (Base‘𝑃) = (Base‘𝑃)
6 mdeg0.z . . . 4 0 = (0g𝑃)
75, 6grpidcl 18948 . . 3 (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃))
8 mdeg0.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
9 eqid 2735 . . . 4 (0g𝑅) = (0g𝑅)
10 eqid 2735 . . . 4 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
11 eqid 2735 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
128, 2, 5, 9, 10, 11mdegval 26020 . . 3 ( 0 ∈ (Base‘𝑃) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
134, 7, 123syl 18 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
14 simpl 482 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝐼𝑉)
151adantl 481 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Grp)
162, 10, 9, 6, 14, 15mpl0 21966 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}))
17 fvex 6889 . . . . . . . . . 10 (0g𝑅) ∈ V
18 fnconstg 6766 . . . . . . . . . 10 ((0g𝑅) ∈ V → ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
1917, 18mp1i 13 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
2016fneq1d 6631 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}))
2119, 20mpbird 257 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
22 ovex 7438 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
2322rabex 5309 . . . . . . . . 9 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V)
2517a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → (0g𝑅) ∈ V)
26 fnsuppeq0 8191 . . . . . . . 8 (( 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g𝑅) ∈ V) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2721, 24, 25, 26syl3anc 1373 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2816, 27mpbird 257 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 supp (0g𝑅)) = ∅)
2928imaeq2d 6047 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅))
30 ima0 6064 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅
3129, 30eqtrdi 2786 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ∅)
3231supeq1d 9458 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = sup(∅, ℝ*, < ))
33 xrsup0 13339 . . 3 sup(∅, ℝ*, < ) = -∞
3432, 33eqtrdi 2786 . 2 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = -∞)
3513, 34eqtrd 2770 1 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  c0 4308  {csn 4601  cmpt 5201   × cxp 5652  ccnv 5653  cima 5657   Fn wfn 6526  cfv 6531  (class class class)co 7405   supp csupp 8159  m cmap 8840  Fincfn 8959  supcsup 9452  -∞cmnf 11267  *cxr 11268   < clt 11269  cn 12240  0cn0 12501  Basecbs 17228  0gc0g 17453   Σg cgsu 17454  Grpcgrp 18916  Ringcrg 20193  fldccnfld 21315   mPoly cmpl 21866   mDeg cmdg 26010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-ring 20195  df-psr 21869  df-mpl 21871  df-mdeg 26012
This theorem is referenced by:  deg1z  26044
  Copyright terms: Public domain W3C validator