| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdeg0 | Structured version Visualization version GIF version | ||
| Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| mdeg0.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdeg0.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdeg0.z | ⊢ 0 = (0g‘𝑃) |
| Ref | Expression |
|---|---|
| mdeg0 | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20158 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | mdeg0.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | 2 | mplgrp 21955 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 4 | 1, 3 | sylan2 593 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Grp) |
| 5 | eqid 2733 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 6 | mdeg0.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 7 | 5, 6 | grpidcl 18880 | . . 3 ⊢ (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃)) |
| 8 | mdeg0.d | . . . 4 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 9 | eqid 2733 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 10 | eqid 2733 | . . . 4 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
| 11 | eqid 2733 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
| 12 | 8, 2, 5, 9, 10, 11 | mdegval 25996 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (𝐷‘ 0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < )) |
| 13 | 4, 7, 12 | 3syl 18 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < )) |
| 14 | simpl 482 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ 𝑉) | |
| 15 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp) |
| 16 | 2, 10, 9, 6, 14, 15 | mpl0 21944 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
| 17 | fvex 6841 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
| 18 | fnconstg 6716 | . . . . . . . . . 10 ⊢ ((0g‘𝑅) ∈ V → ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) | |
| 19 | 17, 18 | mp1i 13 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) |
| 20 | 16 | fneq1d 6579 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin})) |
| 21 | 19, 20 | mpbird 257 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) |
| 22 | ovex 7385 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 23 | 22 | rabex 5279 | . . . . . . . . 9 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V |
| 24 | 23 | a1i 11 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V) |
| 25 | 17 | a1i 11 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (0g‘𝑅) ∈ V) |
| 26 | fnsuppeq0 8128 | . . . . . . . 8 ⊢ (( 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g‘𝑅) ∈ V) → (( 0 supp (0g‘𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}))) | |
| 27 | 21, 24, 25, 26 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (( 0 supp (0g‘𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}))) |
| 28 | 16, 27 | mpbird 257 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( 0 supp (0g‘𝑅)) = ∅) |
| 29 | 28 | imaeq2d 6013 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅)) |
| 30 | ima0 6030 | . . . . 5 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅ | |
| 31 | 29, 30 | eqtrdi 2784 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))) = ∅) |
| 32 | 31 | supeq1d 9337 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < ) = sup(∅, ℝ*, < )) |
| 33 | xrsup0 13224 | . . 3 ⊢ sup(∅, ℝ*, < ) = -∞ | |
| 34 | 32, 33 | eqtrdi 2784 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < ) = -∞) |
| 35 | 13, 34 | eqtrd 2768 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∅c0 4282 {csn 4575 ↦ cmpt 5174 × cxp 5617 ◡ccnv 5618 “ cima 5622 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 supp csupp 8096 ↑m cmap 8756 Fincfn 8875 supcsup 9331 -∞cmnf 11151 ℝ*cxr 11152 < clt 11153 ℕcn 12132 ℕ0cn0 12388 Basecbs 17122 0gc0g 17345 Σg cgsu 17346 Grpcgrp 18848 Ringcrg 20153 ℂfldccnfld 21293 mPoly cmpl 21845 mDeg cmdg 25986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-prds 17353 df-pws 17355 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-subg 19038 df-ring 20155 df-psr 21848 df-mpl 21850 df-mdeg 25988 |
| This theorem is referenced by: deg1z 26020 |
| Copyright terms: Public domain | W3C validator |