| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdeg0 | Structured version Visualization version GIF version | ||
| Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| mdeg0.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdeg0.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdeg0.z | ⊢ 0 = (0g‘𝑃) |
| Ref | Expression |
|---|---|
| mdeg0 | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20198 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | mdeg0.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | 2 | mplgrp 21977 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 4 | 1, 3 | sylan2 593 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Grp) |
| 5 | eqid 2735 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 6 | mdeg0.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 7 | 5, 6 | grpidcl 18948 | . . 3 ⊢ (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃)) |
| 8 | mdeg0.d | . . . 4 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 9 | eqid 2735 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 10 | eqid 2735 | . . . 4 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
| 11 | eqid 2735 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
| 12 | 8, 2, 5, 9, 10, 11 | mdegval 26020 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (𝐷‘ 0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < )) |
| 13 | 4, 7, 12 | 3syl 18 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < )) |
| 14 | simpl 482 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ 𝑉) | |
| 15 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp) |
| 16 | 2, 10, 9, 6, 14, 15 | mpl0 21966 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
| 17 | fvex 6889 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
| 18 | fnconstg 6766 | . . . . . . . . . 10 ⊢ ((0g‘𝑅) ∈ V → ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) | |
| 19 | 17, 18 | mp1i 13 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) |
| 20 | 16 | fneq1d 6631 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin})) |
| 21 | 19, 20 | mpbird 257 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) |
| 22 | ovex 7438 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 23 | 22 | rabex 5309 | . . . . . . . . 9 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V |
| 24 | 23 | a1i 11 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V) |
| 25 | 17 | a1i 11 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (0g‘𝑅) ∈ V) |
| 26 | fnsuppeq0 8191 | . . . . . . . 8 ⊢ (( 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g‘𝑅) ∈ V) → (( 0 supp (0g‘𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}))) | |
| 27 | 21, 24, 25, 26 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (( 0 supp (0g‘𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}))) |
| 28 | 16, 27 | mpbird 257 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( 0 supp (0g‘𝑅)) = ∅) |
| 29 | 28 | imaeq2d 6047 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅)) |
| 30 | ima0 6064 | . . . . 5 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅ | |
| 31 | 29, 30 | eqtrdi 2786 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))) = ∅) |
| 32 | 31 | supeq1d 9458 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < ) = sup(∅, ℝ*, < )) |
| 33 | xrsup0 13339 | . . 3 ⊢ sup(∅, ℝ*, < ) = -∞ | |
| 34 | 32, 33 | eqtrdi 2786 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < ) = -∞) |
| 35 | 13, 34 | eqtrd 2770 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∅c0 4308 {csn 4601 ↦ cmpt 5201 × cxp 5652 ◡ccnv 5653 “ cima 5657 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 supp csupp 8159 ↑m cmap 8840 Fincfn 8959 supcsup 9452 -∞cmnf 11267 ℝ*cxr 11268 < clt 11269 ℕcn 12240 ℕ0cn0 12501 Basecbs 17228 0gc0g 17453 Σg cgsu 17454 Grpcgrp 18916 Ringcrg 20193 ℂfldccnfld 21315 mPoly cmpl 21866 mDeg cmdg 26010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-subg 19106 df-ring 20195 df-psr 21869 df-mpl 21871 df-mdeg 26012 |
| This theorem is referenced by: deg1z 26044 |
| Copyright terms: Public domain | W3C validator |