MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdeg0 Structured version   Visualization version   GIF version

Theorem mdeg0 24823
Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdeg0.d 𝐷 = (𝐼 mDeg 𝑅)
mdeg0.p 𝑃 = (𝐼 mPoly 𝑅)
mdeg0.z 0 = (0g𝑃)
Assertion
Ref Expression
mdeg0 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)

Proof of Theorem mdeg0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringgrp 19421 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 mdeg0.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
32mplgrp 20832 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
41, 3sylan2 596 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑃 ∈ Grp)
5 eqid 2738 . . . 4 (Base‘𝑃) = (Base‘𝑃)
6 mdeg0.z . . . 4 0 = (0g𝑃)
75, 6grpidcl 18249 . . 3 (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃))
8 mdeg0.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
9 eqid 2738 . . . 4 (0g𝑅) = (0g𝑅)
10 eqid 2738 . . . 4 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
11 eqid 2738 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
128, 2, 5, 9, 10, 11mdegval 24816 . . 3 ( 0 ∈ (Base‘𝑃) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
134, 7, 123syl 18 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
14 simpl 486 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝐼𝑉)
151adantl 485 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Grp)
162, 10, 9, 6, 14, 15mpl0 20822 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}))
17 fvex 6687 . . . . . . . . . 10 (0g𝑅) ∈ V
18 fnconstg 6566 . . . . . . . . . 10 ((0g𝑅) ∈ V → ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
1917, 18mp1i 13 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
2016fneq1d 6431 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}))
2119, 20mpbird 260 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
22 ovex 7203 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
2322rabex 5200 . . . . . . . . 9 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V)
2517a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → (0g𝑅) ∈ V)
26 fnsuppeq0 7887 . . . . . . . 8 (( 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g𝑅) ∈ V) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2721, 24, 25, 26syl3anc 1372 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2816, 27mpbird 260 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 supp (0g𝑅)) = ∅)
2928imaeq2d 5903 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅))
30 ima0 5919 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅
3129, 30eqtrdi 2789 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ∅)
3231supeq1d 8983 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = sup(∅, ℝ*, < ))
33 xrsup0 12799 . . 3 sup(∅, ℝ*, < ) = -∞
3432, 33eqtrdi 2789 . 2 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = -∞)
3513, 34eqtrd 2773 1 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  {crab 3057  Vcvv 3398  c0 4211  {csn 4516  cmpt 5110   × cxp 5523  ccnv 5524  cima 5528   Fn wfn 6334  cfv 6339  (class class class)co 7170   supp csupp 7856  m cmap 8437  Fincfn 8555  supcsup 8977  -∞cmnf 10751  *cxr 10752   < clt 10753  cn 11716  0cn0 11976  Basecbs 16586  0gc0g 16816   Σg cgsu 16817  Grpcgrp 18219  Ringcrg 19416  fldccnfld 20217   mPoly cmpl 20719   mDeg cmdg 24803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-tset 16687  df-0g 16818  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-subg 18394  df-ring 19418  df-psr 20722  df-mpl 20724  df-mdeg 24805
This theorem is referenced by:  deg1z  24840
  Copyright terms: Public domain W3C validator