MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdeg0 Structured version   Visualization version   GIF version

Theorem mdeg0 25140
Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdeg0.d 𝐷 = (𝐼 mDeg 𝑅)
mdeg0.p 𝑃 = (𝐼 mPoly 𝑅)
mdeg0.z 0 = (0g𝑃)
Assertion
Ref Expression
mdeg0 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)

Proof of Theorem mdeg0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringgrp 19703 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 mdeg0.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
32mplgrp 21132 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
41, 3sylan2 592 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑃 ∈ Grp)
5 eqid 2738 . . . 4 (Base‘𝑃) = (Base‘𝑃)
6 mdeg0.z . . . 4 0 = (0g𝑃)
75, 6grpidcl 18522 . . 3 (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃))
8 mdeg0.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
9 eqid 2738 . . . 4 (0g𝑅) = (0g𝑅)
10 eqid 2738 . . . 4 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
11 eqid 2738 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
128, 2, 5, 9, 10, 11mdegval 25133 . . 3 ( 0 ∈ (Base‘𝑃) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
134, 7, 123syl 18 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
14 simpl 482 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝐼𝑉)
151adantl 481 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Grp)
162, 10, 9, 6, 14, 15mpl0 21122 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}))
17 fvex 6769 . . . . . . . . . 10 (0g𝑅) ∈ V
18 fnconstg 6646 . . . . . . . . . 10 ((0g𝑅) ∈ V → ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
1917, 18mp1i 13 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
2016fneq1d 6510 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}))
2119, 20mpbird 256 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
22 ovex 7288 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
2322rabex 5251 . . . . . . . . 9 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V)
2517a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → (0g𝑅) ∈ V)
26 fnsuppeq0 7979 . . . . . . . 8 (( 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g𝑅) ∈ V) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2721, 24, 25, 26syl3anc 1369 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2816, 27mpbird 256 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 supp (0g𝑅)) = ∅)
2928imaeq2d 5958 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅))
30 ima0 5974 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅
3129, 30eqtrdi 2795 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ∅)
3231supeq1d 9135 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = sup(∅, ℝ*, < ))
33 xrsup0 12986 . . 3 sup(∅, ℝ*, < ) = -∞
3432, 33eqtrdi 2795 . 2 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = -∞)
3513, 34eqtrd 2778 1 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  c0 4253  {csn 4558  cmpt 5153   × cxp 5578  ccnv 5579  cima 5583   Fn wfn 6413  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  Fincfn 8691  supcsup 9129  -∞cmnf 10938  *cxr 10939   < clt 10940  cn 11903  0cn0 12163  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  Grpcgrp 18492  Ringcrg 19698  fldccnfld 20510   mPoly cmpl 21019   mDeg cmdg 25120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-ring 19700  df-psr 21022  df-mpl 21024  df-mdeg 25122
This theorem is referenced by:  deg1z  25157
  Copyright terms: Public domain W3C validator