MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdeg0 Structured version   Visualization version   GIF version

Theorem mdeg0 25991
Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdeg0.d 𝐷 = (𝐼 mDeg 𝑅)
mdeg0.p 𝑃 = (𝐼 mPoly 𝑅)
mdeg0.z 0 = (0g𝑃)
Assertion
Ref Expression
mdeg0 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)

Proof of Theorem mdeg0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringgrp 20141 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 mdeg0.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
32mplgrp 21942 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
41, 3sylan2 593 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑃 ∈ Grp)
5 eqid 2729 . . . 4 (Base‘𝑃) = (Base‘𝑃)
6 mdeg0.z . . . 4 0 = (0g𝑃)
75, 6grpidcl 18862 . . 3 (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃))
8 mdeg0.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
9 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
10 eqid 2729 . . . 4 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
11 eqid 2729 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
128, 2, 5, 9, 10, 11mdegval 25984 . . 3 ( 0 ∈ (Base‘𝑃) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
134, 7, 123syl 18 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ))
14 simpl 482 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝐼𝑉)
151adantl 481 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Grp)
162, 10, 9, 6, 14, 15mpl0 21931 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}))
17 fvex 6839 . . . . . . . . . 10 (0g𝑅) ∈ V
18 fnconstg 6716 . . . . . . . . . 10 ((0g𝑅) ∈ V → ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
1917, 18mp1i 13 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
2016fneq1d 6579 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)}) Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}))
2119, 20mpbird 257 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin})
22 ovex 7386 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
2322rabex 5281 . . . . . . . . 9 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V)
2517a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → (0g𝑅) ∈ V)
26 fnsuppeq0 8132 . . . . . . . 8 (( 0 Fn {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g𝑅) ∈ V) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2721, 24, 25, 26syl3anc 1373 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (( 0 supp (0g𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} × {(0g𝑅)})))
2816, 27mpbird 257 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → ( 0 supp (0g𝑅)) = ∅)
2928imaeq2d 6015 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅))
30 ima0 6032 . . . . 5 ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅
3129, 30eqtrdi 2780 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))) = ∅)
3231supeq1d 9355 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = sup(∅, ℝ*, < ))
33 xrsup0 13243 . . 3 sup(∅, ℝ*, < ) = -∞
3432, 33eqtrdi 2780 . 2 ((𝐼𝑉𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g𝑅))), ℝ*, < ) = -∞)
3513, 34eqtrd 2764 1 ((𝐼𝑉𝑅 ∈ Ring) → (𝐷0 ) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  c0 4286  {csn 4579  cmpt 5176   × cxp 5621  ccnv 5622  cima 5626   Fn wfn 6481  cfv 6486  (class class class)co 7353   supp csupp 8100  m cmap 8760  Fincfn 8879  supcsup 9349  -∞cmnf 11166  *cxr 11167   < clt 11168  cn 12146  0cn0 12402  Basecbs 17138  0gc0g 17361   Σg cgsu 17362  Grpcgrp 18830  Ringcrg 20136  fldccnfld 21279   mPoly cmpl 21831   mDeg cmdg 25974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-pws 17371  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-ring 20138  df-psr 21834  df-mpl 21836  df-mdeg 25976
This theorem is referenced by:  deg1z  26008
  Copyright terms: Public domain W3C validator