| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdeg0 | Structured version Visualization version GIF version | ||
| Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| mdeg0.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| mdeg0.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mdeg0.z | ⊢ 0 = (0g‘𝑃) |
| Ref | Expression |
|---|---|
| mdeg0 | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20154 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | mdeg0.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | 2 | mplgrp 21952 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 4 | 1, 3 | sylan2 593 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Grp) |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 6 | mdeg0.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 7 | 5, 6 | grpidcl 18875 | . . 3 ⊢ (𝑃 ∈ Grp → 0 ∈ (Base‘𝑃)) |
| 8 | mdeg0.d | . . . 4 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
| 9 | eqid 2731 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 10 | eqid 2731 | . . . 4 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
| 11 | eqid 2731 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
| 12 | 8, 2, 5, 9, 10, 11 | mdegval 25993 | . . 3 ⊢ ( 0 ∈ (Base‘𝑃) → (𝐷‘ 0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < )) |
| 13 | 4, 7, 12 | 3syl 18 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < )) |
| 14 | simpl 482 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ 𝑉) | |
| 15 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp) |
| 16 | 2, 10, 9, 6, 14, 15 | mpl0 21941 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)})) |
| 17 | fvex 6835 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
| 18 | fnconstg 6711 | . . . . . . . . . 10 ⊢ ((0g‘𝑅) ∈ V → ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) | |
| 19 | 17, 18 | mp1i 13 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) |
| 20 | 16 | fneq1d 6574 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↔ ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}) Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin})) |
| 21 | 19, 20 | mpbird 257 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin}) |
| 22 | ovex 7379 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 23 | 22 | rabex 5277 | . . . . . . . . 9 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V |
| 24 | 23 | a1i 11 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V) |
| 25 | 17 | a1i 11 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (0g‘𝑅) ∈ V) |
| 26 | fnsuppeq0 8122 | . . . . . . . 8 ⊢ (( 0 Fn {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∧ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ∈ V ∧ (0g‘𝑅) ∈ V) → (( 0 supp (0g‘𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}))) | |
| 27 | 21, 24, 25, 26 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (( 0 supp (0g‘𝑅)) = ∅ ↔ 0 = ({𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} × {(0g‘𝑅)}))) |
| 28 | 16, 27 | mpbird 257 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( 0 supp (0g‘𝑅)) = ∅) |
| 29 | 28 | imaeq2d 6009 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))) = ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅)) |
| 30 | ima0 6026 | . . . . 5 ⊢ ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ∅) = ∅ | |
| 31 | 29, 30 | eqtrdi 2782 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))) = ∅) |
| 32 | 31 | supeq1d 9330 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < ) = sup(∅, ℝ*, < )) |
| 33 | xrsup0 13219 | . . 3 ⊢ sup(∅, ℝ*, < ) = -∞ | |
| 34 | 32, 33 | eqtrdi 2782 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ ( 0 supp (0g‘𝑅))), ℝ*, < ) = -∞) |
| 35 | 13, 34 | eqtrd 2766 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∅c0 4283 {csn 4576 ↦ cmpt 5172 × cxp 5614 ◡ccnv 5615 “ cima 5619 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 ↑m cmap 8750 Fincfn 8869 supcsup 9324 -∞cmnf 11141 ℝ*cxr 11142 < clt 11143 ℕcn 12122 ℕ0cn0 12378 Basecbs 17117 0gc0g 17340 Σg cgsu 17341 Grpcgrp 18843 Ringcrg 20149 ℂfldccnfld 21289 mPoly cmpl 21841 mDeg cmdg 25983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-prds 17348 df-pws 17350 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-subg 19033 df-ring 20151 df-psr 21844 df-mpl 21846 df-mdeg 25985 |
| This theorem is referenced by: deg1z 26017 |
| Copyright terms: Public domain | W3C validator |