![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvmcl | Structured version Visualization version GIF version |
Description: Closure law for the vector subtraction operation of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvmf.1 | β’ π = (BaseSetβπ) |
nvmf.3 | β’ π = ( βπ£ βπ) |
Ref | Expression |
---|---|
nvmcl | β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄ππ΅) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvmf.1 | . . 3 β’ π = (BaseSetβπ) | |
2 | nvmf.3 | . . 3 β’ π = ( βπ£ βπ) | |
3 | 1, 2 | nvmf 30166 | . 2 β’ (π β NrmCVec β π:(π Γ π)βΆπ) |
4 | fovcdm 7580 | . 2 β’ ((π:(π Γ π)βΆπ β§ π΄ β π β§ π΅ β π) β (π΄ππ΅) β π) | |
5 | 3, 4 | syl3an1 1162 | 1 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄ππ΅) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7412 NrmCVeccnv 30105 BaseSetcba 30107 βπ£ cnsb 30110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-sub 11451 df-neg 11452 df-grpo 30014 df-gid 30015 df-ginv 30016 df-gdiv 30017 df-ablo 30066 df-vc 30080 df-nv 30113 df-va 30116 df-ba 30117 df-sm 30118 df-0v 30119 df-vs 30120 df-nmcv 30121 |
This theorem is referenced by: nvmeq0 30179 vacn 30215 smcnlem 30218 sspimsval 30259 blometi 30324 dipsubdi 30370 siilem1 30372 ip2eqi 30377 minvecolem1 30395 minvecolem2 30396 minvecolem4 30401 minvecolem5 30402 minvecolem6 30403 |
Copyright terms: Public domain | W3C validator |