Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc4uzlem Structured version   Visualization version   GIF version

Theorem axdc4uzlem 13105
 Description: Lemma for axdc4uz 13106. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
axdc4uz.1 𝑀 ∈ ℤ
axdc4uz.2 𝑍 = (ℤ𝑀)
axdc4uz.3 𝐴 ∈ V
axdc4uz.4 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
axdc4uz.5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
Assertion
Ref Expression
axdc4uzlem ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝑥,𝐴   𝐶,𝑔   𝑔,𝐹,𝑘,𝑛,𝑥   𝑦,𝑔,𝑀,𝑘,𝑛,𝑥   𝑔,𝑍,𝑛,𝑥   𝑔,𝐺,𝑘,𝑛,𝑥   𝑘,𝐻
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦,𝑘,𝑛)   𝐹(𝑦)   𝐺(𝑦)   𝐻(𝑥,𝑦,𝑔,𝑛)   𝑍(𝑦,𝑘)

Proof of Theorem axdc4uzlem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc4uz.1 . . . . . . . . . . 11 𝑀 ∈ ℤ
2 axdc4uz.4 . . . . . . . . . . 11 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
31, 2om2uzf1oi 13075 . . . . . . . . . 10 𝐺:ω–1-1-onto→(ℤ𝑀)
4 axdc4uz.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 f1oeq3 6384 . . . . . . . . . . 11 (𝑍 = (ℤ𝑀) → (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀))
73, 6mpbir 223 . . . . . . . . 9 𝐺:ω–1-1-onto𝑍
8 f1of 6393 . . . . . . . . 9 (𝐺:ω–1-1-onto𝑍𝐺:ω⟶𝑍)
97, 8ax-mp 5 . . . . . . . 8 𝐺:ω⟶𝑍
109ffvelrni 6624 . . . . . . 7 (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝑍)
11 fovrn 7083 . . . . . . 7 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝐺𝑛) ∈ 𝑍𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1210, 11syl3an2 1164 . . . . . 6 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
13123expb 1110 . . . . 5 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑛 ∈ ω ∧ 𝑥𝐴)) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1413ralrimivva 3153 . . . 4 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
15 axdc4uz.5 . . . . 5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
1615fmpt2 7519 . . . 4 (∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) ↔ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
1714, 16sylib 210 . . 3 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
18 axdc4uz.3 . . . 4 𝐴 ∈ V
1918axdc4 9615 . . 3 ((𝐶𝐴𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
2017, 19sylan2 586 . 2 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
21 f1ocnv 6405 . . . . . . 7 (𝐺:ω–1-1-onto𝑍𝐺:𝑍1-1-onto→ω)
22 f1of 6393 . . . . . . 7 (𝐺:𝑍1-1-onto→ω → 𝐺:𝑍⟶ω)
237, 21, 22mp2b 10 . . . . . 6 𝐺:𝑍⟶ω
24 fco 6310 . . . . . 6 ((𝑓:ω⟶𝐴𝐺:𝑍⟶ω) → (𝑓𝐺):𝑍𝐴)
2523, 24mpan2 681 . . . . 5 (𝑓:ω⟶𝐴 → (𝑓𝐺):𝑍𝐴)
26253ad2ant1 1124 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓𝐺):𝑍𝐴)
27 uzid 12011 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
281, 27ax-mp 5 . . . . . . . 8 𝑀 ∈ (ℤ𝑀)
2928, 4eleqtrri 2858 . . . . . . 7 𝑀𝑍
30 fvco3 6537 . . . . . . 7 ((𝐺:𝑍⟶ω ∧ 𝑀𝑍) → ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀)))
3123, 29, 30mp2an 682 . . . . . 6 ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀))
321, 2om2uz0i 13069 . . . . . . . 8 (𝐺‘∅) = 𝑀
33 peano1 7365 . . . . . . . . 9 ∅ ∈ ω
34 f1ocnvfv 6808 . . . . . . . . 9 ((𝐺:ω–1-1-onto𝑍 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅))
357, 33, 34mp2an 682 . . . . . . . 8 ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅)
3632, 35ax-mp 5 . . . . . . 7 (𝐺𝑀) = ∅
3736fveq2i 6451 . . . . . 6 (𝑓‘(𝐺𝑀)) = (𝑓‘∅)
3831, 37eqtri 2802 . . . . 5 ((𝑓𝐺)‘𝑀) = (𝑓‘∅)
39 simp2 1128 . . . . 5 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓‘∅) = 𝐶)
4038, 39syl5eq 2826 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ((𝑓𝐺)‘𝑀) = 𝐶)
4123ffvelrni 6624 . . . . . . . . . 10 (𝑘𝑍 → (𝐺𝑘) ∈ ω)
4241adantl 475 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝐺𝑘) ∈ ω)
43 suceq 6043 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → suc 𝑚 = suc (𝐺𝑘))
4443fveq2d 6452 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑓‘suc 𝑚) = (𝑓‘suc (𝐺𝑘)))
45 id 22 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → 𝑚 = (𝐺𝑘))
46 fveq2 6448 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → (𝑓𝑚) = (𝑓‘(𝐺𝑘)))
4745, 46oveq12d 6942 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑚𝐻(𝑓𝑚)) = ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))))
4844, 47eleq12d 2853 . . . . . . . . . 10 (𝑚 = (𝐺𝑘) → ((𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) ↔ (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
4948rspcv 3507 . . . . . . . . 9 ((𝐺𝑘) ∈ ω → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
5042, 49syl 17 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
514peano2uzs 12052 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
52 fvco3 6537 . . . . . . . . . . . 12 ((𝐺:𝑍⟶ω ∧ (𝑘 + 1) ∈ 𝑍) → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
5323, 51, 52sylancr 581 . . . . . . . . . . 11 (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
541, 2om2uzsuci 13070 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
5541, 54syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
56 f1ocnvfv2 6807 . . . . . . . . . . . . . . . 16 ((𝐺:ω–1-1-onto𝑍𝑘𝑍) → (𝐺‘(𝐺𝑘)) = 𝑘)
577, 56mpan 680 . . . . . . . . . . . . . . 15 (𝑘𝑍 → (𝐺‘(𝐺𝑘)) = 𝑘)
5857oveq1d 6939 . . . . . . . . . . . . . 14 (𝑘𝑍 → ((𝐺‘(𝐺𝑘)) + 1) = (𝑘 + 1))
5955, 58eqtrd 2814 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = (𝑘 + 1))
60 peano2 7366 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → suc (𝐺𝑘) ∈ ω)
6141, 60syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → suc (𝐺𝑘) ∈ ω)
62 f1ocnvfv 6808 . . . . . . . . . . . . . 14 ((𝐺:ω–1-1-onto𝑍 ∧ suc (𝐺𝑘) ∈ ω) → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
637, 61, 62sylancr 581 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
6459, 63mpd 15 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘))
6564fveq2d 6452 . . . . . . . . . . 11 (𝑘𝑍 → (𝑓‘(𝐺‘(𝑘 + 1))) = (𝑓‘suc (𝐺𝑘)))
6653, 65eqtr2d 2815 . . . . . . . . . 10 (𝑘𝑍 → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
6766adantl 475 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
68 ffvelrn 6623 . . . . . . . . . . . 12 ((𝑓:ω⟶𝐴 ∧ (𝐺𝑘) ∈ ω) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
6941, 68sylan2 586 . . . . . . . . . . 11 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
70 fveq2 6448 . . . . . . . . . . . . 13 (𝑛 = (𝐺𝑘) → (𝐺𝑛) = (𝐺‘(𝐺𝑘)))
7170oveq1d 6939 . . . . . . . . . . . 12 (𝑛 = (𝐺𝑘) → ((𝐺𝑛)𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹𝑥))
72 oveq2 6932 . . . . . . . . . . . 12 (𝑥 = (𝑓‘(𝐺𝑘)) → ((𝐺‘(𝐺𝑘))𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
73 ovex 6956 . . . . . . . . . . . 12 ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) ∈ V
7471, 72, 15, 73ovmpt2 7075 . . . . . . . . . . 11 (((𝐺𝑘) ∈ ω ∧ (𝑓‘(𝐺𝑘)) ∈ 𝐴) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
7542, 69, 74syl2anc 579 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
76 fvco3 6537 . . . . . . . . . . . . . 14 ((𝐺:𝑍⟶ω ∧ 𝑘𝑍) → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7723, 76mpan 680 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7877eqcomd 2784 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑓‘(𝐺𝑘)) = ((𝑓𝐺)‘𝑘))
7957, 78oveq12d 6942 . . . . . . . . . . 11 (𝑘𝑍 → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8079adantl 475 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8175, 80eqtrd 2814 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8267, 81eleq12d 2853 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8350, 82sylibd 231 . . . . . . 7 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8483impancom 445 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8584ralrimiv 3147 . . . . 5 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
86853adant2 1122 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
87 vex 3401 . . . . . 6 𝑓 ∈ V
88 rdgfun 7797 . . . . . . . . 9 Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀)
89 omex 8839 . . . . . . . . 9 ω ∈ V
90 resfunexg 6753 . . . . . . . . 9 ((Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V)
9188, 89, 90mp2an 682 . . . . . . . 8 (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V
922, 91eqeltri 2855 . . . . . . 7 𝐺 ∈ V
9392cnvex 7394 . . . . . 6 𝐺 ∈ V
9487, 93coex 7399 . . . . 5 (𝑓𝐺) ∈ V
95 feq1 6274 . . . . . 6 (𝑔 = (𝑓𝐺) → (𝑔:𝑍𝐴 ↔ (𝑓𝐺):𝑍𝐴))
96 fveq1 6447 . . . . . . 7 (𝑔 = (𝑓𝐺) → (𝑔𝑀) = ((𝑓𝐺)‘𝑀))
9796eqeq1d 2780 . . . . . 6 (𝑔 = (𝑓𝐺) → ((𝑔𝑀) = 𝐶 ↔ ((𝑓𝐺)‘𝑀) = 𝐶))
98 fveq1 6447 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑔‘(𝑘 + 1)) = ((𝑓𝐺)‘(𝑘 + 1)))
99 fveq1 6447 . . . . . . . . 9 (𝑔 = (𝑓𝐺) → (𝑔𝑘) = ((𝑓𝐺)‘𝑘))
10099oveq2d 6940 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑘𝐹(𝑔𝑘)) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
10198, 100eleq12d 2853 . . . . . . 7 (𝑔 = (𝑓𝐺) → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
102101ralbidv 3168 . . . . . 6 (𝑔 = (𝑓𝐺) → (∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
10395, 97, 1023anbi123d 1509 . . . . 5 (𝑔 = (𝑓𝐺) → ((𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ ((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))))
10494, 103spcev 3502 . . . 4 (((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10526, 40, 86, 104syl3anc 1439 . . 3 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
106105exlimiv 1973 . 2 (∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10720, 106syl 17 1 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601  ∃wex 1823   ∈ wcel 2107  ∀wral 3090  Vcvv 3398   ∖ cdif 3789  ∅c0 4141  𝒫 cpw 4379  {csn 4398   ↦ cmpt 4967   × cxp 5355  ◡ccnv 5356   ↾ cres 5359   ∘ ccom 5361  suc csuc 5980  Fun wfun 6131  ⟶wf 6133  –1-1-onto→wf1o 6136  ‘cfv 6137  (class class class)co 6924   ↦ cmpt2 6926  ωcom 7345  reccrdg 7790  1c1 10275   + caddc 10277  ℤcz 11732  ℤ≥cuz 11996 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-dc 9605  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997 This theorem is referenced by:  axdc4uz  13106
 Copyright terms: Public domain W3C validator