| Step | Hyp | Ref
| Expression |
| 1 | | axdc4uz.1 |
. . . . . . . . . . 11
⊢ 𝑀 ∈ ℤ |
| 2 | | axdc4uz.4 |
. . . . . . . . . . 11
⊢ 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) |
| 3 | 1, 2 | om2uzf1oi 13994 |
. . . . . . . . . 10
⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝑀) |
| 4 | | axdc4uz.2 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | | f1oeq3 6838 |
. . . . . . . . . . 11
⊢ (𝑍 =
(ℤ≥‘𝑀) → (𝐺:ω–1-1-onto→𝑍 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘𝑀))) |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐺:ω–1-1-onto→𝑍 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘𝑀)) |
| 7 | 3, 6 | mpbir 231 |
. . . . . . . . 9
⊢ 𝐺:ω–1-1-onto→𝑍 |
| 8 | | f1of 6848 |
. . . . . . . . 9
⊢ (𝐺:ω–1-1-onto→𝑍 → 𝐺:ω⟶𝑍) |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
⊢ 𝐺:ω⟶𝑍 |
| 10 | 9 | ffvelcdmi 7103 |
. . . . . . 7
⊢ (𝑛 ∈ ω → (𝐺‘𝑛) ∈ 𝑍) |
| 11 | | fovcdm 7603 |
. . . . . . 7
⊢ ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝐺‘𝑛) ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
| 12 | 10, 11 | syl3an2 1165 |
. . . . . 6
⊢ ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
| 13 | 12 | 3expb 1121 |
. . . . 5
⊢ ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴)) → ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
| 14 | 13 | ralrimivva 3202 |
. . . 4
⊢ (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑛 ∈ ω ∀𝑥 ∈ 𝐴 ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
| 15 | | axdc4uz.5 |
. . . . 5
⊢ 𝐻 = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ((𝐺‘𝑛)𝐹𝑥)) |
| 16 | 15 | fmpo 8093 |
. . . 4
⊢
(∀𝑛 ∈
ω ∀𝑥 ∈
𝐴 ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) ↔ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) |
| 17 | 14, 16 | sylib 218 |
. . 3
⊢ (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) |
| 18 | | axdc4uz.3 |
. . . 4
⊢ 𝐴 ∈ V |
| 19 | 18 | axdc4 10496 |
. . 3
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)))) |
| 20 | 17, 19 | sylan2 593 |
. 2
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)))) |
| 21 | | f1ocnv 6860 |
. . . . . . 7
⊢ (𝐺:ω–1-1-onto→𝑍 → ◡𝐺:𝑍–1-1-onto→ω) |
| 22 | | f1of 6848 |
. . . . . . 7
⊢ (◡𝐺:𝑍–1-1-onto→ω → ◡𝐺:𝑍⟶ω) |
| 23 | 7, 21, 22 | mp2b 10 |
. . . . . 6
⊢ ◡𝐺:𝑍⟶ω |
| 24 | | fco 6760 |
. . . . . 6
⊢ ((𝑓:ω⟶𝐴 ∧ ◡𝐺:𝑍⟶ω) → (𝑓 ∘ ◡𝐺):𝑍⟶𝐴) |
| 25 | 23, 24 | mpan2 691 |
. . . . 5
⊢ (𝑓:ω⟶𝐴 → (𝑓 ∘ ◡𝐺):𝑍⟶𝐴) |
| 26 | 25 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → (𝑓 ∘ ◡𝐺):𝑍⟶𝐴) |
| 27 | | uzid 12893 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 28 | 1, 27 | ax-mp 5 |
. . . . . . . 8
⊢ 𝑀 ∈
(ℤ≥‘𝑀) |
| 29 | 28, 4 | eleqtrri 2840 |
. . . . . . 7
⊢ 𝑀 ∈ 𝑍 |
| 30 | | fvco3 7008 |
. . . . . . 7
⊢ ((◡𝐺:𝑍⟶ω ∧ 𝑀 ∈ 𝑍) → ((𝑓 ∘ ◡𝐺)‘𝑀) = (𝑓‘(◡𝐺‘𝑀))) |
| 31 | 23, 29, 30 | mp2an 692 |
. . . . . 6
⊢ ((𝑓 ∘ ◡𝐺)‘𝑀) = (𝑓‘(◡𝐺‘𝑀)) |
| 32 | 1, 2 | om2uz0i 13988 |
. . . . . . . 8
⊢ (𝐺‘∅) = 𝑀 |
| 33 | | peano1 7910 |
. . . . . . . . 9
⊢ ∅
∈ ω |
| 34 | | f1ocnvfv 7298 |
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ ∅ ∈ ω)
→ ((𝐺‘∅) =
𝑀 → (◡𝐺‘𝑀) = ∅)) |
| 35 | 7, 33, 34 | mp2an 692 |
. . . . . . . 8
⊢ ((𝐺‘∅) = 𝑀 → (◡𝐺‘𝑀) = ∅) |
| 36 | 32, 35 | ax-mp 5 |
. . . . . . 7
⊢ (◡𝐺‘𝑀) = ∅ |
| 37 | 36 | fveq2i 6909 |
. . . . . 6
⊢ (𝑓‘(◡𝐺‘𝑀)) = (𝑓‘∅) |
| 38 | 31, 37 | eqtri 2765 |
. . . . 5
⊢ ((𝑓 ∘ ◡𝐺)‘𝑀) = (𝑓‘∅) |
| 39 | | simp2 1138 |
. . . . 5
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → (𝑓‘∅) = 𝐶) |
| 40 | 38, 39 | eqtrid 2789 |
. . . 4
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ((𝑓 ∘ ◡𝐺)‘𝑀) = 𝐶) |
| 41 | 23 | ffvelcdmi 7103 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → (◡𝐺‘𝑘) ∈ ω) |
| 42 | 41 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (◡𝐺‘𝑘) ∈ ω) |
| 43 | | suceq 6450 |
. . . . . . . . . . . 12
⊢ (𝑚 = (◡𝐺‘𝑘) → suc 𝑚 = suc (◡𝐺‘𝑘)) |
| 44 | 43 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑚 = (◡𝐺‘𝑘) → (𝑓‘suc 𝑚) = (𝑓‘suc (◡𝐺‘𝑘))) |
| 45 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑚 = (◡𝐺‘𝑘) → 𝑚 = (◡𝐺‘𝑘)) |
| 46 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑚 = (◡𝐺‘𝑘) → (𝑓‘𝑚) = (𝑓‘(◡𝐺‘𝑘))) |
| 47 | 45, 46 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑚 = (◡𝐺‘𝑘) → (𝑚𝐻(𝑓‘𝑚)) = ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘)))) |
| 48 | 44, 47 | eleq12d 2835 |
. . . . . . . . . 10
⊢ (𝑚 = (◡𝐺‘𝑘) → ((𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)) ↔ (𝑓‘suc (◡𝐺‘𝑘)) ∈ ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))))) |
| 49 | 48 | rspcv 3618 |
. . . . . . . . 9
⊢ ((◡𝐺‘𝑘) ∈ ω → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)) → (𝑓‘suc (◡𝐺‘𝑘)) ∈ ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))))) |
| 50 | 42, 49 | syl 17 |
. . . . . . . 8
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)) → (𝑓‘suc (◡𝐺‘𝑘)) ∈ ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))))) |
| 51 | 4 | peano2uzs 12944 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → (𝑘 + 1) ∈ 𝑍) |
| 52 | | fvco3 7008 |
. . . . . . . . . . . 12
⊢ ((◡𝐺:𝑍⟶ω ∧ (𝑘 + 1) ∈ 𝑍) → ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) = (𝑓‘(◡𝐺‘(𝑘 + 1)))) |
| 53 | 23, 51, 52 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) = (𝑓‘(◡𝐺‘(𝑘 + 1)))) |
| 54 | 1, 2 | om2uzsuci 13989 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐺‘𝑘) ∈ ω → (𝐺‘suc (◡𝐺‘𝑘)) = ((𝐺‘(◡𝐺‘𝑘)) + 1)) |
| 55 | 41, 54 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑍 → (𝐺‘suc (◡𝐺‘𝑘)) = ((𝐺‘(◡𝐺‘𝑘)) + 1)) |
| 56 | | f1ocnvfv2 7297 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 57 | 7, 56 | mpan 690 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝑍 → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 58 | 57 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑍 → ((𝐺‘(◡𝐺‘𝑘)) + 1) = (𝑘 + 1)) |
| 59 | 55, 58 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 → (𝐺‘suc (◡𝐺‘𝑘)) = (𝑘 + 1)) |
| 60 | | peano2 7912 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐺‘𝑘) ∈ ω → suc (◡𝐺‘𝑘) ∈ ω) |
| 61 | 41, 60 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑍 → suc (◡𝐺‘𝑘) ∈ ω) |
| 62 | | f1ocnvfv 7298 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ suc (◡𝐺‘𝑘) ∈ ω) → ((𝐺‘suc (◡𝐺‘𝑘)) = (𝑘 + 1) → (◡𝐺‘(𝑘 + 1)) = suc (◡𝐺‘𝑘))) |
| 63 | 7, 61, 62 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 → ((𝐺‘suc (◡𝐺‘𝑘)) = (𝑘 + 1) → (◡𝐺‘(𝑘 + 1)) = suc (◡𝐺‘𝑘))) |
| 64 | 59, 63 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → (◡𝐺‘(𝑘 + 1)) = suc (◡𝐺‘𝑘)) |
| 65 | 64 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → (𝑓‘(◡𝐺‘(𝑘 + 1))) = (𝑓‘suc (◡𝐺‘𝑘))) |
| 66 | 53, 65 | eqtr2d 2778 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → (𝑓‘suc (◡𝐺‘𝑘)) = ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1))) |
| 67 | 66 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (𝑓‘suc (◡𝐺‘𝑘)) = ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1))) |
| 68 | | ffvelcdm 7101 |
. . . . . . . . . . . 12
⊢ ((𝑓:ω⟶𝐴 ∧ (◡𝐺‘𝑘) ∈ ω) → (𝑓‘(◡𝐺‘𝑘)) ∈ 𝐴) |
| 69 | 41, 68 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (𝑓‘(◡𝐺‘𝑘)) ∈ 𝐴) |
| 70 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (◡𝐺‘𝑘) → (𝐺‘𝑛) = (𝐺‘(◡𝐺‘𝑘))) |
| 71 | 70 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑛 = (◡𝐺‘𝑘) → ((𝐺‘𝑛)𝐹𝑥) = ((𝐺‘(◡𝐺‘𝑘))𝐹𝑥)) |
| 72 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑓‘(◡𝐺‘𝑘)) → ((𝐺‘(◡𝐺‘𝑘))𝐹𝑥) = ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘)))) |
| 73 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘))) ∈ V |
| 74 | 71, 72, 15, 73 | ovmpo 7593 |
. . . . . . . . . . 11
⊢ (((◡𝐺‘𝑘) ∈ ω ∧ (𝑓‘(◡𝐺‘𝑘)) ∈ 𝐴) → ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))) = ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘)))) |
| 75 | 42, 69, 74 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))) = ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘)))) |
| 76 | | fvco3 7008 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐺:𝑍⟶ω ∧ 𝑘 ∈ 𝑍) → ((𝑓 ∘ ◡𝐺)‘𝑘) = (𝑓‘(◡𝐺‘𝑘))) |
| 77 | 23, 76 | mpan 690 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 → ((𝑓 ∘ ◡𝐺)‘𝑘) = (𝑓‘(◡𝐺‘𝑘))) |
| 78 | 77 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → (𝑓‘(◡𝐺‘𝑘)) = ((𝑓 ∘ ◡𝐺)‘𝑘)) |
| 79 | 57, 78 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘))) = (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
| 80 | 79 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘))) = (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
| 81 | 75, 80 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))) = (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
| 82 | 67, 81 | eleq12d 2835 |
. . . . . . . 8
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝑓‘suc (◡𝐺‘𝑘)) ∈ ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))) ↔ ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
| 83 | 50, 82 | sylibd 239 |
. . . . . . 7
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)) → ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
| 84 | 83 | impancom 451 |
. . . . . 6
⊢ ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → (𝑘 ∈ 𝑍 → ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
| 85 | 84 | ralrimiv 3145 |
. . . . 5
⊢ ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
| 86 | 85 | 3adant2 1132 |
. . . 4
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
| 87 | | vex 3484 |
. . . . . 6
⊢ 𝑓 ∈ V |
| 88 | | rdgfun 8456 |
. . . . . . . . 9
⊢ Fun
rec((𝑦 ∈ V ↦
(𝑦 + 1)), 𝑀) |
| 89 | | omex 9683 |
. . . . . . . . 9
⊢ ω
∈ V |
| 90 | | resfunexg 7235 |
. . . . . . . . 9
⊢ ((Fun
rec((𝑦 ∈ V ↦
(𝑦 + 1)), 𝑀) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈
V) |
| 91 | 88, 89, 90 | mp2an 692 |
. . . . . . . 8
⊢
(rec((𝑦 ∈ V
↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈
V |
| 92 | 2, 91 | eqeltri 2837 |
. . . . . . 7
⊢ 𝐺 ∈ V |
| 93 | 92 | cnvex 7947 |
. . . . . 6
⊢ ◡𝐺 ∈ V |
| 94 | 87, 93 | coex 7952 |
. . . . 5
⊢ (𝑓 ∘ ◡𝐺) ∈ V |
| 95 | | feq1 6716 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑔:𝑍⟶𝐴 ↔ (𝑓 ∘ ◡𝐺):𝑍⟶𝐴)) |
| 96 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑔‘𝑀) = ((𝑓 ∘ ◡𝐺)‘𝑀)) |
| 97 | 96 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → ((𝑔‘𝑀) = 𝐶 ↔ ((𝑓 ∘ ◡𝐺)‘𝑀) = 𝐶)) |
| 98 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑔‘(𝑘 + 1)) = ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1))) |
| 99 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑔‘𝑘) = ((𝑓 ∘ ◡𝐺)‘𝑘)) |
| 100 | 99 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑘𝐹(𝑔‘𝑘)) = (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
| 101 | 98, 100 | eleq12d 2835 |
. . . . . . 7
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
| 102 | 101 | ralbidv 3178 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
| 103 | 95, 97, 102 | 3anbi123d 1438 |
. . . . 5
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → ((𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ ((𝑓 ∘ ◡𝐺):𝑍⟶𝐴 ∧ ((𝑓 ∘ ◡𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))))) |
| 104 | 94, 103 | spcev 3606 |
. . . 4
⊢ (((𝑓 ∘ ◡𝐺):𝑍⟶𝐴 ∧ ((𝑓 ∘ ◡𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| 105 | 26, 40, 86, 104 | syl3anc 1373 |
. . 3
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| 106 | 105 | exlimiv 1930 |
. 2
⊢
(∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| 107 | 20, 106 | syl 17 |
1
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |