MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc4uzlem Structured version   Visualization version   GIF version

Theorem axdc4uzlem 13984
Description: Lemma for axdc4uz 13985. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
axdc4uz.1 𝑀 ∈ ℤ
axdc4uz.2 𝑍 = (ℤ𝑀)
axdc4uz.3 𝐴 ∈ V
axdc4uz.4 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
axdc4uz.5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
Assertion
Ref Expression
axdc4uzlem ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝑥,𝐴   𝐶,𝑔   𝑔,𝐹,𝑘,𝑛,𝑥   𝑦,𝑔,𝑀,𝑘,𝑛,𝑥   𝑔,𝑍,𝑛,𝑥   𝑔,𝐺,𝑘,𝑛,𝑥   𝑘,𝐻
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦,𝑘,𝑛)   𝐹(𝑦)   𝐺(𝑦)   𝐻(𝑥,𝑦,𝑔,𝑛)   𝑍(𝑦,𝑘)

Proof of Theorem axdc4uzlem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc4uz.1 . . . . . . . . . . 11 𝑀 ∈ ℤ
2 axdc4uz.4 . . . . . . . . . . 11 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
31, 2om2uzf1oi 13954 . . . . . . . . . 10 𝐺:ω–1-1-onto→(ℤ𝑀)
4 axdc4uz.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 f1oeq3 6828 . . . . . . . . . . 11 (𝑍 = (ℤ𝑀) → (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀)))
64, 5ax-mp 5 . . . . . . . . . 10 (𝐺:ω–1-1-onto𝑍𝐺:ω–1-1-onto→(ℤ𝑀))
73, 6mpbir 230 . . . . . . . . 9 𝐺:ω–1-1-onto𝑍
8 f1of 6838 . . . . . . . . 9 (𝐺:ω–1-1-onto𝑍𝐺:ω⟶𝑍)
97, 8ax-mp 5 . . . . . . . 8 𝐺:ω⟶𝑍
109ffvelcdmi 7092 . . . . . . 7 (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝑍)
11 fovcdm 7591 . . . . . . 7 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝐺𝑛) ∈ 𝑍𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1210, 11syl3an2 1161 . . . . . 6 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
13123expb 1117 . . . . 5 ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑛 ∈ ω ∧ 𝑥𝐴)) → ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
1413ralrimivva 3190 . . . 4 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}))
15 axdc4uz.5 . . . . 5 𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))
1615fmpo 8073 . . . 4 (∀𝑛 ∈ ω ∀𝑥𝐴 ((𝐺𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) ↔ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
1714, 16sylib 217 . . 3 (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))
18 axdc4uz.3 . . . 4 𝐴 ∈ V
1918axdc4 10481 . . 3 ((𝐶𝐴𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
2017, 19sylan2 591 . 2 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))))
21 f1ocnv 6850 . . . . . . 7 (𝐺:ω–1-1-onto𝑍𝐺:𝑍1-1-onto→ω)
22 f1of 6838 . . . . . . 7 (𝐺:𝑍1-1-onto→ω → 𝐺:𝑍⟶ω)
237, 21, 22mp2b 10 . . . . . 6 𝐺:𝑍⟶ω
24 fco 6747 . . . . . 6 ((𝑓:ω⟶𝐴𝐺:𝑍⟶ω) → (𝑓𝐺):𝑍𝐴)
2523, 24mpan2 689 . . . . 5 (𝑓:ω⟶𝐴 → (𝑓𝐺):𝑍𝐴)
26253ad2ant1 1130 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓𝐺):𝑍𝐴)
27 uzid 12870 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
281, 27ax-mp 5 . . . . . . . 8 𝑀 ∈ (ℤ𝑀)
2928, 4eleqtrri 2824 . . . . . . 7 𝑀𝑍
30 fvco3 6996 . . . . . . 7 ((𝐺:𝑍⟶ω ∧ 𝑀𝑍) → ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀)))
3123, 29, 30mp2an 690 . . . . . 6 ((𝑓𝐺)‘𝑀) = (𝑓‘(𝐺𝑀))
321, 2om2uz0i 13948 . . . . . . . 8 (𝐺‘∅) = 𝑀
33 peano1 7895 . . . . . . . . 9 ∅ ∈ ω
34 f1ocnvfv 7287 . . . . . . . . 9 ((𝐺:ω–1-1-onto𝑍 ∧ ∅ ∈ ω) → ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅))
357, 33, 34mp2an 690 . . . . . . . 8 ((𝐺‘∅) = 𝑀 → (𝐺𝑀) = ∅)
3632, 35ax-mp 5 . . . . . . 7 (𝐺𝑀) = ∅
3736fveq2i 6899 . . . . . 6 (𝑓‘(𝐺𝑀)) = (𝑓‘∅)
3831, 37eqtri 2753 . . . . 5 ((𝑓𝐺)‘𝑀) = (𝑓‘∅)
39 simp2 1134 . . . . 5 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑓‘∅) = 𝐶)
4038, 39eqtrid 2777 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ((𝑓𝐺)‘𝑀) = 𝐶)
4123ffvelcdmi 7092 . . . . . . . . . 10 (𝑘𝑍 → (𝐺𝑘) ∈ ω)
4241adantl 480 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝐺𝑘) ∈ ω)
43 suceq 6437 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → suc 𝑚 = suc (𝐺𝑘))
4443fveq2d 6900 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑓‘suc 𝑚) = (𝑓‘suc (𝐺𝑘)))
45 id 22 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → 𝑚 = (𝐺𝑘))
46 fveq2 6896 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑘) → (𝑓𝑚) = (𝑓‘(𝐺𝑘)))
4745, 46oveq12d 7437 . . . . . . . . . . 11 (𝑚 = (𝐺𝑘) → (𝑚𝐻(𝑓𝑚)) = ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))))
4844, 47eleq12d 2819 . . . . . . . . . 10 (𝑚 = (𝐺𝑘) → ((𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) ↔ (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
4948rspcv 3602 . . . . . . . . 9 ((𝐺𝑘) ∈ ω → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
5042, 49syl 17 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → (𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘)))))
514peano2uzs 12919 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
52 fvco3 6996 . . . . . . . . . . . 12 ((𝐺:𝑍⟶ω ∧ (𝑘 + 1) ∈ 𝑍) → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
5323, 51, 52sylancr 585 . . . . . . . . . . 11 (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) = (𝑓‘(𝐺‘(𝑘 + 1))))
541, 2om2uzsuci 13949 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
5541, 54syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = ((𝐺‘(𝐺𝑘)) + 1))
56 f1ocnvfv2 7286 . . . . . . . . . . . . . . . 16 ((𝐺:ω–1-1-onto𝑍𝑘𝑍) → (𝐺‘(𝐺𝑘)) = 𝑘)
577, 56mpan 688 . . . . . . . . . . . . . . 15 (𝑘𝑍 → (𝐺‘(𝐺𝑘)) = 𝑘)
5857oveq1d 7434 . . . . . . . . . . . . . 14 (𝑘𝑍 → ((𝐺‘(𝐺𝑘)) + 1) = (𝑘 + 1))
5955, 58eqtrd 2765 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺‘suc (𝐺𝑘)) = (𝑘 + 1))
60 peano2 7897 . . . . . . . . . . . . . . 15 ((𝐺𝑘) ∈ ω → suc (𝐺𝑘) ∈ ω)
6141, 60syl 17 . . . . . . . . . . . . . 14 (𝑘𝑍 → suc (𝐺𝑘) ∈ ω)
62 f1ocnvfv 7287 . . . . . . . . . . . . . 14 ((𝐺:ω–1-1-onto𝑍 ∧ suc (𝐺𝑘) ∈ ω) → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
637, 61, 62sylancr 585 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝐺‘suc (𝐺𝑘)) = (𝑘 + 1) → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘)))
6459, 63mpd 15 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺‘(𝑘 + 1)) = suc (𝐺𝑘))
6564fveq2d 6900 . . . . . . . . . . 11 (𝑘𝑍 → (𝑓‘(𝐺‘(𝑘 + 1))) = (𝑓‘suc (𝐺𝑘)))
6653, 65eqtr2d 2766 . . . . . . . . . 10 (𝑘𝑍 → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
6766adantl 480 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘suc (𝐺𝑘)) = ((𝑓𝐺)‘(𝑘 + 1)))
68 ffvelcdm 7090 . . . . . . . . . . . 12 ((𝑓:ω⟶𝐴 ∧ (𝐺𝑘) ∈ ω) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
6941, 68sylan2 591 . . . . . . . . . . 11 ((𝑓:ω⟶𝐴𝑘𝑍) → (𝑓‘(𝐺𝑘)) ∈ 𝐴)
70 fveq2 6896 . . . . . . . . . . . . 13 (𝑛 = (𝐺𝑘) → (𝐺𝑛) = (𝐺‘(𝐺𝑘)))
7170oveq1d 7434 . . . . . . . . . . . 12 (𝑛 = (𝐺𝑘) → ((𝐺𝑛)𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹𝑥))
72 oveq2 7427 . . . . . . . . . . . 12 (𝑥 = (𝑓‘(𝐺𝑘)) → ((𝐺‘(𝐺𝑘))𝐹𝑥) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
73 ovex 7452 . . . . . . . . . . . 12 ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) ∈ V
7471, 72, 15, 73ovmpo 7581 . . . . . . . . . . 11 (((𝐺𝑘) ∈ ω ∧ (𝑓‘(𝐺𝑘)) ∈ 𝐴) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
7542, 69, 74syl2anc 582 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))))
76 fvco3 6996 . . . . . . . . . . . . . 14 ((𝐺:𝑍⟶ω ∧ 𝑘𝑍) → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7723, 76mpan 688 . . . . . . . . . . . . 13 (𝑘𝑍 → ((𝑓𝐺)‘𝑘) = (𝑓‘(𝐺𝑘)))
7877eqcomd 2731 . . . . . . . . . . . 12 (𝑘𝑍 → (𝑓‘(𝐺𝑘)) = ((𝑓𝐺)‘𝑘))
7957, 78oveq12d 7437 . . . . . . . . . . 11 (𝑘𝑍 → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8079adantl 480 . . . . . . . . . 10 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺‘(𝐺𝑘))𝐹(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8175, 80eqtrd 2765 . . . . . . . . 9 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
8267, 81eleq12d 2819 . . . . . . . 8 ((𝑓:ω⟶𝐴𝑘𝑍) → ((𝑓‘suc (𝐺𝑘)) ∈ ((𝐺𝑘)𝐻(𝑓‘(𝐺𝑘))) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8350, 82sylibd 238 . . . . . . 7 ((𝑓:ω⟶𝐴𝑘𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚)) → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8483impancom 450 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → (𝑘𝑍 → ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
8584ralrimiv 3134 . . . . 5 ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
86853adant2 1128 . . . 4 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))
87 vex 3465 . . . . . 6 𝑓 ∈ V
88 rdgfun 8437 . . . . . . . . 9 Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀)
89 omex 9668 . . . . . . . . 9 ω ∈ V
90 resfunexg 7227 . . . . . . . . 9 ((Fun rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V)
9188, 89, 90mp2an 690 . . . . . . . 8 (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈ V
922, 91eqeltri 2821 . . . . . . 7 𝐺 ∈ V
9392cnvex 7933 . . . . . 6 𝐺 ∈ V
9487, 93coex 7938 . . . . 5 (𝑓𝐺) ∈ V
95 feq1 6704 . . . . . 6 (𝑔 = (𝑓𝐺) → (𝑔:𝑍𝐴 ↔ (𝑓𝐺):𝑍𝐴))
96 fveq1 6895 . . . . . . 7 (𝑔 = (𝑓𝐺) → (𝑔𝑀) = ((𝑓𝐺)‘𝑀))
9796eqeq1d 2727 . . . . . 6 (𝑔 = (𝑓𝐺) → ((𝑔𝑀) = 𝐶 ↔ ((𝑓𝐺)‘𝑀) = 𝐶))
98 fveq1 6895 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑔‘(𝑘 + 1)) = ((𝑓𝐺)‘(𝑘 + 1)))
99 fveq1 6895 . . . . . . . . 9 (𝑔 = (𝑓𝐺) → (𝑔𝑘) = ((𝑓𝐺)‘𝑘))
10099oveq2d 7435 . . . . . . . 8 (𝑔 = (𝑓𝐺) → (𝑘𝐹(𝑔𝑘)) = (𝑘𝐹((𝑓𝐺)‘𝑘)))
10198, 100eleq12d 2819 . . . . . . 7 (𝑔 = (𝑓𝐺) → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
102101ralbidv 3167 . . . . . 6 (𝑔 = (𝑓𝐺) → (∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))))
10395, 97, 1023anbi123d 1432 . . . . 5 (𝑔 = (𝑓𝐺) → ((𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ ((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘)))))
10494, 103spcev 3590 . . . 4 (((𝑓𝐺):𝑍𝐴 ∧ ((𝑓𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘𝑍 ((𝑓𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓𝐺)‘𝑘))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10526, 40, 86, 104syl3anc 1368 . . 3 ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
106105exlimiv 1925 . 2 (∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓𝑚))) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
10720, 106syl 17 1 ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wral 3050  Vcvv 3461  cdif 3941  c0 4322  𝒫 cpw 4604  {csn 4630  cmpt 5232   × cxp 5676  ccnv 5677  cres 5680  ccom 5682  suc csuc 6373  Fun wfun 6543  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  cmpo 7421  ωcom 7871  reccrdg 8430  1c1 11141   + caddc 11143  cz 12591  cuz 12855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-dc 10471  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856
This theorem is referenced by:  axdc4uz  13985
  Copyright terms: Public domain W3C validator