MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppxpfi Structured version   Visualization version   GIF version

Theorem fsuppxpfi 9275
Description: The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019.)
Assertion
Ref Expression
fsuppxpfi ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin)

Proof of Theorem fsuppxpfi
StepHypRef Expression
1 id 22 . . 3 (𝐹 finSupp 𝑍𝐹 finSupp 𝑍)
21fsuppimpd 9259 . 2 (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin)
3 id 22 . . 3 (𝐺 finSupp 𝑍𝐺 finSupp 𝑍)
43fsuppimpd 9259 . 2 (𝐺 finSupp 𝑍 → (𝐺 supp 𝑍) ∈ Fin)
5 xpfi 9209 . 2 (((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin)
62, 4, 5syl2an 596 1 ((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5092   × cxp 5617  (class class class)co 7349   supp csupp 8093  Fincfn 8872   finSupp cfsupp 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-1o 8388  df-en 8873  df-dom 8874  df-fin 8876  df-fsupp 9252
This theorem is referenced by:  mplsubrglem  21911
  Copyright terms: Public domain W3C validator