| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppxpfi | Structured version Visualization version GIF version | ||
| Description: The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019.) |
| Ref | Expression |
|---|---|
| fsuppxpfi | ⊢ ((𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐹 finSupp 𝑍 → 𝐹 finSupp 𝑍) | |
| 2 | 1 | fsuppimpd 9248 | . 2 ⊢ (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin) |
| 3 | id 22 | . . 3 ⊢ (𝐺 finSupp 𝑍 → 𝐺 finSupp 𝑍) | |
| 4 | 3 | fsuppimpd 9248 | . 2 ⊢ (𝐺 finSupp 𝑍 → (𝐺 supp 𝑍) ∈ Fin) |
| 5 | xpfi 9199 | . 2 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ (𝐺 supp 𝑍) ∈ Fin) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin) | |
| 6 | 2, 4, 5 | syl2an 596 | 1 ⊢ ((𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 × cxp 5609 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-1o 8380 df-en 8865 df-dom 8866 df-fin 8868 df-fsupp 9241 |
| This theorem is referenced by: mplsubrglem 21936 |
| Copyright terms: Public domain | W3C validator |