Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem2 Structured version   Visualization version   GIF version

Theorem fucocolem2 49479
Description: Lemma for fucoco 49482. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucoco.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco.x (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
fucoco.y (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
fucoco.z (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
fucoco.a (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
fucoco.b (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
fucocolem2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucocolem2.ot · = (comp‘𝑇)
fucocolem2.od = (comp‘𝐷)
Assertion
Ref Expression
fucocolem2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
Distinct variable groups:   𝑥,   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑃(𝑥)   𝑇(𝑥)   · (𝑥)   𝑂(𝑥)   𝑌(𝑥)

Proof of Theorem fucocolem2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fucoco.x . . . . . . . 8 (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
2 fucoco.y . . . . . . . 8 (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
31, 2opeq12d 4832 . . . . . . 7 (𝜑 → ⟨𝑋, 𝑌⟩ = ⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩)
4 fucoco.z . . . . . . 7 (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
53, 4oveq12d 7370 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩ ·𝑀, 𝑁⟩))
6 fucoco.b . . . . . 6 (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
7 fucoco.a . . . . . 6 (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
85, 6, 7oveq123d 7373 . . . . 5 (𝜑 → (𝐵(⟨𝑋, 𝑌· 𝑍)𝐴) = (⟨𝑈, 𝑉⟩(⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩ ·𝑀, 𝑁⟩)⟨𝑅, 𝑆⟩))
9 fucocolem2.t . . . . . 6 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
10 fucocolem2.ot . . . . . 6 · = (comp‘𝑇)
11 fucoco.r . . . . . 6 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
12 fucoco.s . . . . . 6 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
13 fucoco.u . . . . . 6 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
14 fucoco.v . . . . . 6 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
15 eqid 2733 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2733 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
17 eqid 2733 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
18 fucocolem2.od . . . . . 6 = (comp‘𝐷)
199, 10, 11, 12, 13, 14, 15, 16, 17, 18xpcfucco3 49383 . . . . 5 (𝜑 → (⟨𝑈, 𝑉⟩(⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩ ·𝑀, 𝑁⟩)⟨𝑅, 𝑆⟩) = ⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩)
208, 19eqtrd 2768 . . . 4 (𝜑 → (𝐵(⟨𝑋, 𝑌· 𝑍)𝐴) = ⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩)
2120fveq2d 6832 . . 3 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = ((𝑋𝑃𝑍)‘⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩))
22 df-ov 7355 . . 3 ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))(𝑋𝑃𝑍)(𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))) = ((𝑋𝑃𝑍)‘⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩)
2321, 22eqtr4di 2786 . 2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))(𝑋𝑃𝑍)(𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))))
24 fucoco.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
259, 10, 11, 12, 13, 14xpcfuccocl 49382 . . . . 5 (𝜑 → (⟨𝑈, 𝑉⟩(⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩ ·𝑀, 𝑁⟩)⟨𝑅, 𝑆⟩) ∈ ((𝐹(𝐷 Nat 𝐸)𝑀) × (𝐺(𝐶 Nat 𝐷)𝑁)))
2619, 25eqeltrrd 2834 . . . 4 (𝜑 → ⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩ ∈ ((𝐹(𝐷 Nat 𝐸)𝑀) × (𝐺(𝐶 Nat 𝐷)𝑁)))
27 opelxp2 5662 . . . 4 (⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩ ∈ ((𝐹(𝐷 Nat 𝐸)𝑀) × (𝐺(𝐶 Nat 𝐷)𝑁)) → (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝))) ∈ (𝐺(𝐶 Nat 𝐷)𝑁))
2826, 27syl 17 . . 3 (𝜑 → (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝))) ∈ (𝐺(𝐶 Nat 𝐷)𝑁))
29 opelxp1 5661 . . . 4 (⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩ ∈ ((𝐹(𝐷 Nat 𝐸)𝑀) × (𝐺(𝐶 Nat 𝐷)𝑁)) → (𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))) ∈ (𝐹(𝐷 Nat 𝐸)𝑀))
3026, 29syl 17 . . 3 (𝜑 → (𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))) ∈ (𝐹(𝐷 Nat 𝐸)𝑀))
3124, 1, 4, 28, 30fuco22a 49475 . 2 (𝜑 → ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))(𝑋𝑃𝑍)(𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥)))))
32 eqid 2733 . . . . . . . . . . 11 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
3332natrcl 17862 . . . . . . . . . 10 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3414, 33syl 17 . . . . . . . . 9 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3534simprd 495 . . . . . . . 8 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
3635func1st2nd 49201 . . . . . . 7 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
3716, 15, 36funcf1 17775 . . . . . 6 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
3837ffvelcdmda 7023 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑁)‘𝑥) ∈ (Base‘𝐷))
39 fveq2 6828 . . . . . . . . 9 (𝑝 = ((1st𝑁)‘𝑥) → ((1st𝐹)‘𝑝) = ((1st𝐹)‘((1st𝑁)‘𝑥)))
40 fveq2 6828 . . . . . . . . 9 (𝑝 = ((1st𝑁)‘𝑥) → ((1st𝐾)‘𝑝) = ((1st𝐾)‘((1st𝑁)‘𝑥)))
4139, 40opeq12d 4832 . . . . . . . 8 (𝑝 = ((1st𝑁)‘𝑥) → ⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩ = ⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩)
42 fveq2 6828 . . . . . . . 8 (𝑝 = ((1st𝑁)‘𝑥) → ((1st𝑀)‘𝑝) = ((1st𝑀)‘((1st𝑁)‘𝑥)))
4341, 42oveq12d 7370 . . . . . . 7 (𝑝 = ((1st𝑁)‘𝑥) → (⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝)) = (⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥))))
44 fveq2 6828 . . . . . . 7 (𝑝 = ((1st𝑁)‘𝑥) → (𝑈𝑝) = (𝑈‘((1st𝑁)‘𝑥)))
45 fveq2 6828 . . . . . . 7 (𝑝 = ((1st𝑁)‘𝑥) → (𝑅𝑝) = (𝑅‘((1st𝑁)‘𝑥)))
4643, 44, 45oveq123d 7373 . . . . . 6 (𝑝 = ((1st𝑁)‘𝑥) → ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥))))
47 eqid 2733 . . . . . 6 (𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))) = (𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))
48 ovex 7385 . . . . . 6 ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)) ∈ V
4946, 47, 48fvmpt3i 6940 . . . . 5 (((1st𝑁)‘𝑥) ∈ (Base‘𝐷) → ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥)) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥))))
5038, 49syl 17 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥)) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥))))
51 fveq2 6828 . . . . . . . . . 10 (𝑝 = 𝑥 → ((1st𝐺)‘𝑝) = ((1st𝐺)‘𝑥))
52 fveq2 6828 . . . . . . . . . 10 (𝑝 = 𝑥 → ((1st𝐿)‘𝑝) = ((1st𝐿)‘𝑥))
5351, 52opeq12d 4832 . . . . . . . . 9 (𝑝 = 𝑥 → ⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ = ⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩)
54 fveq2 6828 . . . . . . . . 9 (𝑝 = 𝑥 → ((1st𝑁)‘𝑝) = ((1st𝑁)‘𝑥))
5553, 54oveq12d 7370 . . . . . . . 8 (𝑝 = 𝑥 → (⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝)) = (⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥)))
56 fveq2 6828 . . . . . . . 8 (𝑝 = 𝑥 → (𝑉𝑝) = (𝑉𝑥))
57 fveq2 6828 . . . . . . . 8 (𝑝 = 𝑥 → (𝑆𝑝) = (𝑆𝑥))
5855, 56, 57oveq123d 7373 . . . . . . 7 (𝑝 = 𝑥 → ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)) = ((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))
59 eqid 2733 . . . . . . 7 (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝))) = (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))
60 ovex 7385 . . . . . . 7 ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)) ∈ V
6158, 59, 60fvmpt3i 6940 . . . . . 6 (𝑥 ∈ (Base‘𝐶) → ((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥) = ((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))
6261fveq2d 6832 . . . . 5 (𝑥 ∈ (Base‘𝐶) → ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥)) = ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))
6362adantl 481 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥)) = ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))
6450, 63oveq12d 7370 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥))) = (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))))
6564mpteq2dva 5186 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
6623, 31, 653eqtrd 2772 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4581  cmpt 5174   × cxp 5617  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Basecbs 17122  compcco 17175   Func cfunc 17763   Nat cnat 17853   FuncCat cfuc 17854   ×c cxpc 18076  F cfuco 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-func 17767  df-cofu 17769  df-nat 17855  df-fuc 17856  df-xpc 18080  df-fuco 49442
This theorem is referenced by:  fucocolem3  49480
  Copyright terms: Public domain W3C validator