Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem2 Structured version   Visualization version   GIF version

Theorem fucocolem2 48921
Description: Lemma for fucoco 48924. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucoco.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco.x (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
fucoco.y (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
fucoco.z (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
fucoco.a (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
fucoco.b (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
fucocolem2.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucocolem2.ot · = (comp‘𝑇)
fucocolem2.od = (comp‘𝐷)
Assertion
Ref Expression
fucocolem2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
Distinct variable groups:   𝑥,   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑃(𝑥)   𝑇(𝑥)   · (𝑥)   𝑂(𝑥)   𝑌(𝑥)

Proof of Theorem fucocolem2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fucoco.x . . . . . . . 8 (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
2 fucoco.y . . . . . . . 8 (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
31, 2opeq12d 4889 . . . . . . 7 (𝜑 → ⟨𝑋, 𝑌⟩ = ⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩)
4 fucoco.z . . . . . . 7 (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
53, 4oveq12d 7456 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩ ·𝑀, 𝑁⟩))
6 fucoco.b . . . . . 6 (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
7 fucoco.a . . . . . 6 (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
85, 6, 7oveq123d 7459 . . . . 5 (𝜑 → (𝐵(⟨𝑋, 𝑌· 𝑍)𝐴) = (⟨𝑈, 𝑉⟩(⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩ ·𝑀, 𝑁⟩)⟨𝑅, 𝑆⟩))
9 fucocolem2.t . . . . . 6 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
10 fucocolem2.ot . . . . . 6 · = (comp‘𝑇)
11 fucoco.r . . . . . 6 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
12 fucoco.s . . . . . 6 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
13 fucoco.u . . . . . 6 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
14 fucoco.v . . . . . 6 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
15 eqid 2737 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
17 eqid 2737 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
18 fucocolem2.od . . . . . 6 = (comp‘𝐷)
199, 10, 11, 12, 13, 14, 15, 16, 17, 18xpcfucco3 48878 . . . . 5 (𝜑 → (⟨𝑈, 𝑉⟩(⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩ ·𝑀, 𝑁⟩)⟨𝑅, 𝑆⟩) = ⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩)
208, 19eqtrd 2777 . . . 4 (𝜑 → (𝐵(⟨𝑋, 𝑌· 𝑍)𝐴) = ⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩)
2120fveq2d 6918 . . 3 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = ((𝑋𝑃𝑍)‘⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩))
22 df-ov 7441 . . 3 ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))(𝑋𝑃𝑍)(𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))) = ((𝑋𝑃𝑍)‘⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩)
2321, 22eqtr4di 2795 . 2 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))(𝑋𝑃𝑍)(𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))))
24 fucoco.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
259, 10, 11, 12, 13, 14xpcfuccocl 48877 . . . . 5 (𝜑 → (⟨𝑈, 𝑉⟩(⟨⟨𝐹, 𝐺⟩, ⟨𝐾, 𝐿⟩⟩ ·𝑀, 𝑁⟩)⟨𝑅, 𝑆⟩) ∈ ((𝐹(𝐷 Nat 𝐸)𝑀) × (𝐺(𝐶 Nat 𝐷)𝑁)))
2619, 25eqeltrrd 2842 . . . 4 (𝜑 → ⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩ ∈ ((𝐹(𝐷 Nat 𝐸)𝑀) × (𝐺(𝐶 Nat 𝐷)𝑁)))
27 opelxp2 5736 . . . 4 (⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩ ∈ ((𝐹(𝐷 Nat 𝐸)𝑀) × (𝐺(𝐶 Nat 𝐷)𝑁)) → (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝))) ∈ (𝐺(𝐶 Nat 𝐷)𝑁))
2826, 27syl 17 . . 3 (𝜑 → (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝))) ∈ (𝐺(𝐶 Nat 𝐷)𝑁))
29 opelxp1 5735 . . . 4 (⟨(𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))), (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))⟩ ∈ ((𝐹(𝐷 Nat 𝐸)𝑀) × (𝐺(𝐶 Nat 𝐷)𝑁)) → (𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))) ∈ (𝐹(𝐷 Nat 𝐸)𝑀))
3026, 29syl 17 . . 3 (𝜑 → (𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))) ∈ (𝐹(𝐷 Nat 𝐸)𝑀))
3124, 1, 4, 28, 30fuco22a 48917 . 2 (𝜑 → ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))(𝑋𝑃𝑍)(𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥)))))
32 relfunc 17922 . . . . . . . 8 Rel (𝐶 Func 𝐷)
33 eqid 2737 . . . . . . . . . . 11 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
3433natrcl 18014 . . . . . . . . . 10 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3514, 34syl 17 . . . . . . . . 9 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
3635simprd 495 . . . . . . . 8 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
37 1st2ndbr 8075 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)) → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
3832, 36, 37sylancr 587 . . . . . . 7 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
3916, 15, 38funcf1 17926 . . . . . 6 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
4039ffvelcdmda 7111 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝑁)‘𝑥) ∈ (Base‘𝐷))
41 fveq2 6914 . . . . . . . . 9 (𝑝 = ((1st𝑁)‘𝑥) → ((1st𝐹)‘𝑝) = ((1st𝐹)‘((1st𝑁)‘𝑥)))
42 fveq2 6914 . . . . . . . . 9 (𝑝 = ((1st𝑁)‘𝑥) → ((1st𝐾)‘𝑝) = ((1st𝐾)‘((1st𝑁)‘𝑥)))
4341, 42opeq12d 4889 . . . . . . . 8 (𝑝 = ((1st𝑁)‘𝑥) → ⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩ = ⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩)
44 fveq2 6914 . . . . . . . 8 (𝑝 = ((1st𝑁)‘𝑥) → ((1st𝑀)‘𝑝) = ((1st𝑀)‘((1st𝑁)‘𝑥)))
4543, 44oveq12d 7456 . . . . . . 7 (𝑝 = ((1st𝑁)‘𝑥) → (⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝)) = (⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥))))
46 fveq2 6914 . . . . . . 7 (𝑝 = ((1st𝑁)‘𝑥) → (𝑈𝑝) = (𝑈‘((1st𝑁)‘𝑥)))
47 fveq2 6914 . . . . . . 7 (𝑝 = ((1st𝑁)‘𝑥) → (𝑅𝑝) = (𝑅‘((1st𝑁)‘𝑥)))
4845, 46, 47oveq123d 7459 . . . . . 6 (𝑝 = ((1st𝑁)‘𝑥) → ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥))))
49 eqid 2737 . . . . . 6 (𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝))) = (𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))
50 ovex 7471 . . . . . 6 ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)) ∈ V
5148, 49, 50fvmpt3i 7028 . . . . 5 (((1st𝑁)‘𝑥) ∈ (Base‘𝐷) → ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥)) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥))))
5240, 51syl 17 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥)) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥))))
53 fveq2 6914 . . . . . . . . . 10 (𝑝 = 𝑥 → ((1st𝐺)‘𝑝) = ((1st𝐺)‘𝑥))
54 fveq2 6914 . . . . . . . . . 10 (𝑝 = 𝑥 → ((1st𝐿)‘𝑝) = ((1st𝐿)‘𝑥))
5553, 54opeq12d 4889 . . . . . . . . 9 (𝑝 = 𝑥 → ⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ = ⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩)
56 fveq2 6914 . . . . . . . . 9 (𝑝 = 𝑥 → ((1st𝑁)‘𝑝) = ((1st𝑁)‘𝑥))
5755, 56oveq12d 7456 . . . . . . . 8 (𝑝 = 𝑥 → (⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝)) = (⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥)))
58 fveq2 6914 . . . . . . . 8 (𝑝 = 𝑥 → (𝑉𝑝) = (𝑉𝑥))
59 fveq2 6914 . . . . . . . 8 (𝑝 = 𝑥 → (𝑆𝑝) = (𝑆𝑥))
6057, 58, 59oveq123d 7459 . . . . . . 7 (𝑝 = 𝑥 → ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)) = ((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))
61 eqid 2737 . . . . . . 7 (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝))) = (𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))
62 ovex 7471 . . . . . . 7 ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)) ∈ V
6360, 61, 62fvmpt3i 7028 . . . . . 6 (𝑥 ∈ (Base‘𝐶) → ((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥) = ((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))
6463fveq2d 6918 . . . . 5 (𝑥 ∈ (Base‘𝐶) → ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥)) = ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))
6564adantl 481 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥)) = ((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))
6652, 65oveq12d 7456 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥))) = (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥)))))
6766mpteq2dva 5251 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ (((𝑝 ∈ (Base‘𝐷) ↦ ((𝑈𝑝)(⟨((1st𝐹)‘𝑝), ((1st𝐾)‘𝑝)⟩(comp‘𝐸)((1st𝑀)‘𝑝))(𝑅𝑝)))‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑝 ∈ (Base‘𝐶) ↦ ((𝑉𝑝)(⟨((1st𝐺)‘𝑝), ((1st𝐿)‘𝑝)⟩ ((1st𝑁)‘𝑝))(𝑆𝑝)))‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
6823, 31, 673eqtrd 2781 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝐵(⟨𝑋, 𝑌· 𝑍)𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐹)‘((1st𝑁)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))(𝑅‘((1st𝑁)‘𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝑁)‘𝑥))‘((𝑉𝑥)(⟨((1st𝐺)‘𝑥), ((1st𝐿)‘𝑥)⟩ ((1st𝑁)‘𝑥))(𝑆𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4640   class class class wbr 5151  cmpt 5234   × cxp 5691  Rel wrel 5698  cfv 6569  (class class class)co 7438  1st c1st 8020  2nd c2nd 8021  Basecbs 17254  compcco 17319   Func cfunc 17914   Nat cnat 18005   FuncCat cfuc 18006   ×c cxpc 18233  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-slot 17225  df-ndx 17237  df-base 17255  df-hom 17331  df-cco 17332  df-cat 17722  df-func 17918  df-cofu 17920  df-nat 18007  df-fuc 18008  df-xpc 18237  df-fuco 48886
This theorem is referenced by:  fucocolem3  48922
  Copyright terms: Public domain W3C validator