Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermceu Structured version   Visualization version   GIF version

Theorem functermceu 49671
Description: There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermceu.c (𝜑𝐶 ∈ Cat)
functermceu.d (𝜑𝐷 ∈ TermCat)
Assertion
Ref Expression
functermceu (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷))
Distinct variable groups:   𝐶,𝑓   𝐷,𝑓
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem functermceu
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5409 . . . 4 ⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩ ∈ V
21a1i 11 . . 3 (𝜑 → ⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩ ∈ V)
3 functermceu.c . . . 4 (𝜑𝐶 ∈ Cat)
4 functermceu.d . . . 4 (𝜑𝐷 ∈ TermCat)
5 eqid 2733 . . . 4 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2733 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 eqid 2733 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2733 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
9 eqid 2733 . . . 4 ((Base‘𝐶) × (Base‘𝐷)) = ((Base‘𝐶) × (Base‘𝐷))
10 eqid 2733 . . . 4 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))
113, 4, 5, 6, 7, 8, 9, 10functermc2 49670 . . 3 (𝜑 → (𝐶 Func 𝐷) = {⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩})
12 sneq 4587 . . . 4 (𝑓 = ⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩ → {𝑓} = {⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩})
1312eqeq2d 2744 . . 3 (𝑓 = ⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩ → ((𝐶 Func 𝐷) = {𝑓} ↔ (𝐶 Func 𝐷) = {⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩}))
142, 11, 13spcedv 3549 . 2 (𝜑 → ∃𝑓(𝐶 Func 𝐷) = {𝑓})
15 eusn 4684 . 2 (∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷) ↔ ∃𝑓(𝐶 Func 𝐷) = {𝑓})
1614, 15sylibr 234 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2113  ∃!weu 2565  Vcvv 3437  {csn 4577  cop 4583   × cxp 5619  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17127  Hom chom 17179  Catccat 17578   Func cfunc 17769  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8832  df-cat 17582  df-cid 17583  df-func 17773  df-thinc 49579  df-termc 49634
This theorem is referenced by:  termcterm  49674  termc  49680
  Copyright terms: Public domain W3C validator