| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functermceu | Structured version Visualization version GIF version | ||
| Description: There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| functermceu.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| functermceu.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| Ref | Expression |
|---|---|
| functermceu | ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5409 | . . . 4 ⊢ 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 ∈ V) |
| 3 | functermceu.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | functermceu.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | eqid 2733 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | eqid 2733 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 9 | eqid 2733 | . . . 4 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = ((Base‘𝐶) × (Base‘𝐷)) | |
| 10 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦)))) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | functermc2 49670 | . . 3 ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉}) |
| 12 | sneq 4587 | . . . 4 ⊢ (𝑓 = 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 → {𝑓} = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉}) | |
| 13 | 12 | eqeq2d 2744 | . . 3 ⊢ (𝑓 = 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 → ((𝐶 Func 𝐷) = {𝑓} ↔ (𝐶 Func 𝐷) = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉})) |
| 14 | 2, 11, 13 | spcedv 3549 | . 2 ⊢ (𝜑 → ∃𝑓(𝐶 Func 𝐷) = {𝑓}) |
| 15 | eusn 4684 | . 2 ⊢ (∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷) ↔ ∃𝑓(𝐶 Func 𝐷) = {𝑓}) | |
| 16 | 14, 15 | sylibr 234 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃!weu 2565 Vcvv 3437 {csn 4577 〈cop 4583 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Basecbs 17127 Hom chom 17179 Catccat 17578 Func cfunc 17769 TermCatctermc 49633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-ixp 8832 df-cat 17582 df-cid 17583 df-func 17773 df-thinc 49579 df-termc 49634 |
| This theorem is referenced by: termcterm 49674 termc 49680 |
| Copyright terms: Public domain | W3C validator |