| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functermceu | Structured version Visualization version GIF version | ||
| Description: There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| functermceu.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| functermceu.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| Ref | Expression |
|---|---|
| functermceu | ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5436 | . . . 4 ⊢ 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 ∈ V) |
| 3 | functermceu.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | functermceu.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | eqid 2734 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | eqid 2734 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 9 | eqid 2734 | . . . 4 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = ((Base‘𝐶) × (Base‘𝐷)) | |
| 10 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦)))) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | functermc2 49179 | . . 3 ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉}) |
| 12 | sneq 4609 | . . . 4 ⊢ (𝑓 = 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 → {𝑓} = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉}) | |
| 13 | 12 | eqeq2d 2745 | . . 3 ⊢ (𝑓 = 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 → ((𝐶 Func 𝐷) = {𝑓} ↔ (𝐶 Func 𝐷) = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉})) |
| 14 | 2, 11, 13 | spcedv 3575 | . 2 ⊢ (𝜑 → ∃𝑓(𝐶 Func 𝐷) = {𝑓}) |
| 15 | eusn 4703 | . 2 ⊢ (∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷) ↔ ∃𝑓(𝐶 Func 𝐷) = {𝑓}) | |
| 16 | 14, 15 | sylibr 234 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2566 Vcvv 3457 {csn 4599 〈cop 4605 × cxp 5649 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 Basecbs 17213 Hom chom 17267 Catccat 17661 Func cfunc 17852 TermCatctermc 49143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-map 8836 df-ixp 8906 df-cat 17665 df-cid 17666 df-func 17856 df-thinc 49091 df-termc 49144 |
| This theorem is referenced by: termcterm 49183 termc 49189 |
| Copyright terms: Public domain | W3C validator |