| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functermceu | Structured version Visualization version GIF version | ||
| Description: There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| functermceu.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| functermceu.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| Ref | Expression |
|---|---|
| functermceu | ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5467 | . . . 4 ⊢ 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 ∈ V) |
| 3 | functermceu.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | functermceu.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 5 | eqid 2736 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | eqid 2736 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 9 | eqid 2736 | . . . 4 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = ((Base‘𝐶) × (Base‘𝐷)) | |
| 10 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦)))) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | functermc2 49114 | . . 3 ⊢ (𝜑 → (𝐶 Func 𝐷) = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉}) |
| 12 | sneq 4634 | . . . 4 ⊢ (𝑓 = 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 → {𝑓} = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉}) | |
| 13 | 12 | eqeq2d 2747 | . . 3 ⊢ (𝑓 = 〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉 → ((𝐶 Func 𝐷) = {𝑓} ↔ (𝐶 Func 𝐷) = {〈((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))〉})) |
| 14 | 2, 11, 13 | spcedv 3597 | . 2 ⊢ (𝜑 → ∃𝑓(𝐶 Func 𝐷) = {𝑓}) |
| 15 | eusn 4728 | . 2 ⊢ (∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷) ↔ ∃𝑓(𝐶 Func 𝐷) = {𝑓}) | |
| 16 | 14, 15 | sylibr 234 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃!weu 2567 Vcvv 3479 {csn 4624 〈cop 4630 × cxp 5681 ‘cfv 6559 (class class class)co 7429 ∈ cmpo 7431 Basecbs 17243 Hom chom 17304 Catccat 17703 Func cfunc 17895 TermCatctermc 49092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-map 8864 df-ixp 8934 df-cat 17707 df-cid 17708 df-func 17899 df-thinc 49041 df-termc 49093 |
| This theorem is referenced by: termcterm 49118 termc 49122 |
| Copyright terms: Public domain | W3C validator |