Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermceu Structured version   Visualization version   GIF version

Theorem functermceu 49472
Description: There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermceu.c (𝜑𝐶 ∈ Cat)
functermceu.d (𝜑𝐷 ∈ TermCat)
Assertion
Ref Expression
functermceu (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷))
Distinct variable groups:   𝐶,𝑓   𝐷,𝑓
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem functermceu
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5419 . . . 4 ⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩ ∈ V
21a1i 11 . . 3 (𝜑 → ⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩ ∈ V)
3 functermceu.c . . . 4 (𝜑𝐶 ∈ Cat)
4 functermceu.d . . . 4 (𝜑𝐷 ∈ TermCat)
5 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2729 . . . 4 (Base‘𝐷) = (Base‘𝐷)
7 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
8 eqid 2729 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
9 eqid 2729 . . . 4 ((Base‘𝐶) × (Base‘𝐷)) = ((Base‘𝐶) × (Base‘𝐷))
10 eqid 2729 . . . 4 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦)))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))
113, 4, 5, 6, 7, 8, 9, 10functermc2 49471 . . 3 (𝜑 → (𝐶 Func 𝐷) = {⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩})
12 sneq 4595 . . . 4 (𝑓 = ⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩ → {𝑓} = {⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩})
1312eqeq2d 2740 . . 3 (𝑓 = ⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩ → ((𝐶 Func 𝐷) = {𝑓} ↔ (𝐶 Func 𝐷) = {⟨((Base‘𝐶) × (Base‘𝐷)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Hom ‘𝐶)𝑦) × ((((Base‘𝐶) × (Base‘𝐷))‘𝑥)(Hom ‘𝐷)(((Base‘𝐶) × (Base‘𝐷))‘𝑦))))⟩}))
142, 11, 13spcedv 3561 . 2 (𝜑 → ∃𝑓(𝐶 Func 𝐷) = {𝑓})
15 eusn 4690 . 2 (∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷) ↔ ∃𝑓(𝐶 Func 𝐷) = {𝑓})
1614, 15sylibr 234 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  Vcvv 3444  {csn 4585  cop 4591   × cxp 5629  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207  Catccat 17601   Func cfunc 17792  TermCatctermc 49434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17605  df-cid 17606  df-func 17796  df-thinc 49380  df-termc 49435
This theorem is referenced by:  termcterm  49475  termc  49481
  Copyright terms: Public domain W3C validator