Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermc2 Structured version   Visualization version   GIF version

Theorem functermc2 49670
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermc.d (𝜑𝐷 ∈ Cat)
functermc.e (𝜑𝐸 ∈ TermCat)
functermc.b 𝐵 = (Base‘𝐷)
functermc.c 𝐶 = (Base‘𝐸)
functermc.h 𝐻 = (Hom ‘𝐷)
functermc.j 𝐽 = (Hom ‘𝐸)
functermc.f 𝐹 = (𝐵 × 𝐶)
functermc.g 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
Assertion
Ref Expression
functermc2 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem functermc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17777 . 2 Rel (𝐷 Func 𝐸)
2 functermc.f . . . 4 𝐹 = (𝐵 × 𝐶)
3 functermc.b . . . . . 6 𝐵 = (Base‘𝐷)
43fvexi 6845 . . . . 5 𝐵 ∈ V
5 functermc.c . . . . . 6 𝐶 = (Base‘𝐸)
65fvexi 6845 . . . . 5 𝐶 ∈ V
74, 6xpex 7695 . . . 4 (𝐵 × 𝐶) ∈ V
82, 7eqeltri 2829 . . 3 𝐹 ∈ V
9 functermc.g . . . 4 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
104, 4mpoex 8020 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) ∈ V
119, 10eqeltri 2829 . . 3 𝐺 ∈ V
128, 11relsnop 5751 . 2 Rel {⟨𝐹, 𝐺⟩}
13 functermc.d . . . 4 (𝜑𝐷 ∈ Cat)
14 functermc.e . . . 4 (𝜑𝐸 ∈ TermCat)
15 functermc.h . . . 4 𝐻 = (Hom ‘𝐷)
16 functermc.j . . . 4 𝐽 = (Hom ‘𝐸)
1713, 14, 3, 5, 15, 16, 2, 9functermc 49669 . . 3 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
18 brsnop 5467 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
198, 11, 18mp2an 692 . . 3 (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺))
2017, 19bitr4di 289 . 2 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤𝑧{⟨𝐹, 𝐺⟩}𝑤))
211, 12, 20eqbrrdiv 5740 1 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cop 4583   class class class wbr 5095   × cxp 5619  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17127  Hom chom 17179  Catccat 17578   Func cfunc 17769  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8832  df-cat 17582  df-cid 17583  df-func 17773  df-thinc 49579  df-termc 49634
This theorem is referenced by:  functermceu  49671  fucterm  49703
  Copyright terms: Public domain W3C validator