Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermc2 Structured version   Visualization version   GIF version

Theorem functermc2 49114
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermc.d (𝜑𝐷 ∈ Cat)
functermc.e (𝜑𝐸 ∈ TermCat)
functermc.b 𝐵 = (Base‘𝐷)
functermc.c 𝐶 = (Base‘𝐸)
functermc.h 𝐻 = (Hom ‘𝐷)
functermc.j 𝐽 = (Hom ‘𝐸)
functermc.f 𝐹 = (𝐵 × 𝐶)
functermc.g 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
Assertion
Ref Expression
functermc2 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem functermc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17903 . 2 Rel (𝐷 Func 𝐸)
2 functermc.f . . . 4 𝐹 = (𝐵 × 𝐶)
3 functermc.b . . . . . 6 𝐵 = (Base‘𝐷)
43fvexi 6918 . . . . 5 𝐵 ∈ V
5 functermc.c . . . . . 6 𝐶 = (Base‘𝐸)
65fvexi 6918 . . . . 5 𝐶 ∈ V
74, 6xpex 7769 . . . 4 (𝐵 × 𝐶) ∈ V
82, 7eqeltri 2836 . . 3 𝐹 ∈ V
9 functermc.g . . . 4 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
104, 4mpoex 8100 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) ∈ V
119, 10eqeltri 2836 . . 3 𝐺 ∈ V
128, 11relsnop 5813 . 2 Rel {⟨𝐹, 𝐺⟩}
13 functermc.d . . . 4 (𝜑𝐷 ∈ Cat)
14 functermc.e . . . 4 (𝜑𝐸 ∈ TermCat)
15 functermc.h . . . 4 𝐻 = (Hom ‘𝐷)
16 functermc.j . . . 4 𝐽 = (Hom ‘𝐸)
1713, 14, 3, 5, 15, 16, 2, 9functermc 49113 . . 3 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
18 brsnop 5525 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
198, 11, 18mp2an 692 . . 3 (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺))
2017, 19bitr4di 289 . 2 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤𝑧{⟨𝐹, 𝐺⟩}𝑤))
211, 12, 20eqbrrdiv 5802 1 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3479  {csn 4624  cop 4630   class class class wbr 5141   × cxp 5681  cfv 6559  (class class class)co 7429  cmpo 7431  Basecbs 17243  Hom chom 17304  Catccat 17703   Func cfunc 17895  TermCatctermc 49092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-1st 8010  df-2nd 8011  df-map 8864  df-ixp 8934  df-cat 17707  df-cid 17708  df-func 17899  df-thinc 49041  df-termc 49093
This theorem is referenced by:  functermceu  49115
  Copyright terms: Public domain W3C validator