| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functermc2 | Structured version Visualization version GIF version | ||
| Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| functermc.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| functermc.e | ⊢ (𝜑 → 𝐸 ∈ TermCat) |
| functermc.b | ⊢ 𝐵 = (Base‘𝐷) |
| functermc.c | ⊢ 𝐶 = (Base‘𝐸) |
| functermc.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| functermc.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| functermc.f | ⊢ 𝐹 = (𝐵 × 𝐶) |
| functermc.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Ref | Expression |
|---|---|
| functermc2 | ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17788 | . 2 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | functermc.f | . . . 4 ⊢ 𝐹 = (𝐵 × 𝐶) | |
| 3 | functermc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
| 4 | 3 | fvexi 6840 | . . . . 5 ⊢ 𝐵 ∈ V |
| 5 | functermc.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝐸) | |
| 6 | 5 | fvexi 6840 | . . . . 5 ⊢ 𝐶 ∈ V |
| 7 | 4, 6 | xpex 7693 | . . . 4 ⊢ (𝐵 × 𝐶) ∈ V |
| 8 | 2, 7 | eqeltri 2824 | . . 3 ⊢ 𝐹 ∈ V |
| 9 | functermc.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 10 | 4, 4 | mpoex 8021 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ∈ V |
| 11 | 9, 10 | eqeltri 2824 | . . 3 ⊢ 𝐺 ∈ V |
| 12 | 8, 11 | relsnop 5752 | . 2 ⊢ Rel {〈𝐹, 𝐺〉} |
| 13 | functermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 14 | functermc.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ TermCat) | |
| 15 | functermc.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 16 | functermc.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 17 | 13, 14, 3, 5, 15, 16, 2, 9 | functermc 49513 | . . 3 ⊢ (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺))) |
| 18 | brsnop 5469 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝑧{〈𝐹, 𝐺〉}𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺))) | |
| 19 | 8, 11, 18 | mp2an 692 | . . 3 ⊢ (𝑧{〈𝐹, 𝐺〉}𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺)) |
| 20 | 17, 19 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ 𝑧{〈𝐹, 𝐺〉}𝑤)) |
| 21 | 1, 12, 20 | eqbrrdiv 5741 | 1 ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 class class class wbr 5095 × cxp 5621 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17139 Hom chom 17191 Catccat 17589 Func cfunc 17780 TermCatctermc 49477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-cat 17593 df-cid 17594 df-func 17784 df-thinc 49423 df-termc 49478 |
| This theorem is referenced by: functermceu 49515 fucterm 49547 |
| Copyright terms: Public domain | W3C validator |