Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermc2 Structured version   Visualization version   GIF version

Theorem functermc2 49541
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermc.d (𝜑𝐷 ∈ Cat)
functermc.e (𝜑𝐸 ∈ TermCat)
functermc.b 𝐵 = (Base‘𝐷)
functermc.c 𝐶 = (Base‘𝐸)
functermc.h 𝐻 = (Hom ‘𝐷)
functermc.j 𝐽 = (Hom ‘𝐸)
functermc.f 𝐹 = (𝐵 × 𝐶)
functermc.g 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
Assertion
Ref Expression
functermc2 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem functermc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17764 . 2 Rel (𝐷 Func 𝐸)
2 functermc.f . . . 4 𝐹 = (𝐵 × 𝐶)
3 functermc.b . . . . . 6 𝐵 = (Base‘𝐷)
43fvexi 6831 . . . . 5 𝐵 ∈ V
5 functermc.c . . . . . 6 𝐶 = (Base‘𝐸)
65fvexi 6831 . . . . 5 𝐶 ∈ V
74, 6xpex 7681 . . . 4 (𝐵 × 𝐶) ∈ V
82, 7eqeltri 2827 . . 3 𝐹 ∈ V
9 functermc.g . . . 4 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
104, 4mpoex 8006 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) ∈ V
119, 10eqeltri 2827 . . 3 𝐺 ∈ V
128, 11relsnop 5740 . 2 Rel {⟨𝐹, 𝐺⟩}
13 functermc.d . . . 4 (𝜑𝐷 ∈ Cat)
14 functermc.e . . . 4 (𝜑𝐸 ∈ TermCat)
15 functermc.h . . . 4 𝐻 = (Hom ‘𝐷)
16 functermc.j . . . 4 𝐽 = (Hom ‘𝐸)
1713, 14, 3, 5, 15, 16, 2, 9functermc 49540 . . 3 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
18 brsnop 5457 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
198, 11, 18mp2an 692 . . 3 (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺))
2017, 19bitr4di 289 . 2 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤𝑧{⟨𝐹, 𝐺⟩}𝑤))
211, 12, 20eqbrrdiv 5729 1 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  cop 4577   class class class wbr 5086   × cxp 5609  cfv 6476  (class class class)co 7341  cmpo 7343  Basecbs 17115  Hom chom 17167  Catccat 17565   Func cfunc 17756  TermCatctermc 49504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-ixp 8817  df-cat 17569  df-cid 17570  df-func 17760  df-thinc 49450  df-termc 49505
This theorem is referenced by:  functermceu  49542  fucterm  49574
  Copyright terms: Public domain W3C validator