| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functermc2 | Structured version Visualization version GIF version | ||
| Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| functermc.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| functermc.e | ⊢ (𝜑 → 𝐸 ∈ TermCat) |
| functermc.b | ⊢ 𝐵 = (Base‘𝐷) |
| functermc.c | ⊢ 𝐶 = (Base‘𝐸) |
| functermc.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| functermc.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| functermc.f | ⊢ 𝐹 = (𝐵 × 𝐶) |
| functermc.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Ref | Expression |
|---|---|
| functermc2 | ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17860 | . 2 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | functermc.f | . . . 4 ⊢ 𝐹 = (𝐵 × 𝐶) | |
| 3 | functermc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
| 4 | 3 | fvexi 6886 | . . . . 5 ⊢ 𝐵 ∈ V |
| 5 | functermc.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝐸) | |
| 6 | 5 | fvexi 6886 | . . . . 5 ⊢ 𝐶 ∈ V |
| 7 | 4, 6 | xpex 7741 | . . . 4 ⊢ (𝐵 × 𝐶) ∈ V |
| 8 | 2, 7 | eqeltri 2829 | . . 3 ⊢ 𝐹 ∈ V |
| 9 | functermc.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 10 | 4, 4 | mpoex 8072 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ∈ V |
| 11 | 9, 10 | eqeltri 2829 | . . 3 ⊢ 𝐺 ∈ V |
| 12 | 8, 11 | relsnop 5781 | . 2 ⊢ Rel {〈𝐹, 𝐺〉} |
| 13 | functermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 14 | functermc.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ TermCat) | |
| 15 | functermc.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 16 | functermc.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 17 | 13, 14, 3, 5, 15, 16, 2, 9 | functermc 49178 | . . 3 ⊢ (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺))) |
| 18 | brsnop 5494 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝑧{〈𝐹, 𝐺〉}𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺))) | |
| 19 | 8, 11, 18 | mp2an 692 | . . 3 ⊢ (𝑧{〈𝐹, 𝐺〉}𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺)) |
| 20 | 17, 19 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ 𝑧{〈𝐹, 𝐺〉}𝑤)) |
| 21 | 1, 12, 20 | eqbrrdiv 5770 | 1 ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 {csn 4599 〈cop 4605 class class class wbr 5116 × cxp 5649 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 Basecbs 17213 Hom chom 17267 Catccat 17661 Func cfunc 17852 TermCatctermc 49143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-map 8836 df-ixp 8906 df-cat 17665 df-cid 17666 df-func 17856 df-thinc 49091 df-termc 49144 |
| This theorem is referenced by: functermceu 49180 |
| Copyright terms: Public domain | W3C validator |