Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermc2 Structured version   Visualization version   GIF version

Theorem functermc2 49514
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermc.d (𝜑𝐷 ∈ Cat)
functermc.e (𝜑𝐸 ∈ TermCat)
functermc.b 𝐵 = (Base‘𝐷)
functermc.c 𝐶 = (Base‘𝐸)
functermc.h 𝐻 = (Hom ‘𝐷)
functermc.j 𝐽 = (Hom ‘𝐸)
functermc.f 𝐹 = (𝐵 × 𝐶)
functermc.g 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
Assertion
Ref Expression
functermc2 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem functermc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17788 . 2 Rel (𝐷 Func 𝐸)
2 functermc.f . . . 4 𝐹 = (𝐵 × 𝐶)
3 functermc.b . . . . . 6 𝐵 = (Base‘𝐷)
43fvexi 6840 . . . . 5 𝐵 ∈ V
5 functermc.c . . . . . 6 𝐶 = (Base‘𝐸)
65fvexi 6840 . . . . 5 𝐶 ∈ V
74, 6xpex 7693 . . . 4 (𝐵 × 𝐶) ∈ V
82, 7eqeltri 2824 . . 3 𝐹 ∈ V
9 functermc.g . . . 4 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
104, 4mpoex 8021 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) ∈ V
119, 10eqeltri 2824 . . 3 𝐺 ∈ V
128, 11relsnop 5752 . 2 Rel {⟨𝐹, 𝐺⟩}
13 functermc.d . . . 4 (𝜑𝐷 ∈ Cat)
14 functermc.e . . . 4 (𝜑𝐸 ∈ TermCat)
15 functermc.h . . . 4 𝐻 = (Hom ‘𝐷)
16 functermc.j . . . 4 𝐽 = (Hom ‘𝐸)
1713, 14, 3, 5, 15, 16, 2, 9functermc 49513 . . 3 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
18 brsnop 5469 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
198, 11, 18mp2an 692 . . 3 (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺))
2017, 19bitr4di 289 . 2 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤𝑧{⟨𝐹, 𝐺⟩}𝑤))
211, 12, 20eqbrrdiv 5741 1 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cop 4585   class class class wbr 5095   × cxp 5621  cfv 6486  (class class class)co 7353  cmpo 7355  Basecbs 17139  Hom chom 17191  Catccat 17589   Func cfunc 17780  TermCatctermc 49477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17593  df-cid 17594  df-func 17784  df-thinc 49423  df-termc 49478
This theorem is referenced by:  functermceu  49515  fucterm  49547
  Copyright terms: Public domain W3C validator