| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functermc2 | Structured version Visualization version GIF version | ||
| Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| functermc.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| functermc.e | ⊢ (𝜑 → 𝐸 ∈ TermCat) |
| functermc.b | ⊢ 𝐵 = (Base‘𝐷) |
| functermc.c | ⊢ 𝐶 = (Base‘𝐸) |
| functermc.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| functermc.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| functermc.f | ⊢ 𝐹 = (𝐵 × 𝐶) |
| functermc.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| Ref | Expression |
|---|---|
| functermc2 | ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17777 | . 2 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | functermc.f | . . . 4 ⊢ 𝐹 = (𝐵 × 𝐶) | |
| 3 | functermc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
| 4 | 3 | fvexi 6845 | . . . . 5 ⊢ 𝐵 ∈ V |
| 5 | functermc.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝐸) | |
| 6 | 5 | fvexi 6845 | . . . . 5 ⊢ 𝐶 ∈ V |
| 7 | 4, 6 | xpex 7695 | . . . 4 ⊢ (𝐵 × 𝐶) ∈ V |
| 8 | 2, 7 | eqeltri 2829 | . . 3 ⊢ 𝐹 ∈ V |
| 9 | functermc.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) | |
| 10 | 4, 4 | mpoex 8020 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ∈ V |
| 11 | 9, 10 | eqeltri 2829 | . . 3 ⊢ 𝐺 ∈ V |
| 12 | 8, 11 | relsnop 5751 | . 2 ⊢ Rel {〈𝐹, 𝐺〉} |
| 13 | functermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 14 | functermc.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ TermCat) | |
| 15 | functermc.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 16 | functermc.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 17 | 13, 14, 3, 5, 15, 16, 2, 9 | functermc 49669 | . . 3 ⊢ (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺))) |
| 18 | brsnop 5467 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝑧{〈𝐹, 𝐺〉}𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺))) | |
| 19 | 8, 11, 18 | mp2an 692 | . . 3 ⊢ (𝑧{〈𝐹, 𝐺〉}𝑤 ↔ (𝑧 = 𝐹 ∧ 𝑤 = 𝐺)) |
| 20 | 17, 19 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ 𝑧{〈𝐹, 𝐺〉}𝑤)) |
| 21 | 1, 12, 20 | eqbrrdiv 5740 | 1 ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 〈cop 4583 class class class wbr 5095 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Basecbs 17127 Hom chom 17179 Catccat 17578 Func cfunc 17769 TermCatctermc 49633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-ixp 8832 df-cat 17582 df-cid 17583 df-func 17773 df-thinc 49579 df-termc 49634 |
| This theorem is referenced by: functermceu 49671 fucterm 49703 |
| Copyright terms: Public domain | W3C validator |