Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermc2 Structured version   Visualization version   GIF version

Theorem functermc2 49471
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermc.d (𝜑𝐷 ∈ Cat)
functermc.e (𝜑𝐸 ∈ TermCat)
functermc.b 𝐵 = (Base‘𝐷)
functermc.c 𝐶 = (Base‘𝐸)
functermc.h 𝐻 = (Hom ‘𝐷)
functermc.j 𝐽 = (Hom ‘𝐸)
functermc.f 𝐹 = (𝐵 × 𝐶)
functermc.g 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
Assertion
Ref Expression
functermc2 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem functermc2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17800 . 2 Rel (𝐷 Func 𝐸)
2 functermc.f . . . 4 𝐹 = (𝐵 × 𝐶)
3 functermc.b . . . . . 6 𝐵 = (Base‘𝐷)
43fvexi 6854 . . . . 5 𝐵 ∈ V
5 functermc.c . . . . . 6 𝐶 = (Base‘𝐸)
65fvexi 6854 . . . . 5 𝐶 ∈ V
74, 6xpex 7709 . . . 4 (𝐵 × 𝐶) ∈ V
82, 7eqeltri 2824 . . 3 𝐹 ∈ V
9 functermc.g . . . 4 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
104, 4mpoex 8037 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))) ∈ V
119, 10eqeltri 2824 . . 3 𝐺 ∈ V
128, 11relsnop 5759 . 2 Rel {⟨𝐹, 𝐺⟩}
13 functermc.d . . . 4 (𝜑𝐷 ∈ Cat)
14 functermc.e . . . 4 (𝜑𝐸 ∈ TermCat)
15 functermc.h . . . 4 𝐻 = (Hom ‘𝐷)
16 functermc.j . . . 4 𝐽 = (Hom ‘𝐸)
1713, 14, 3, 5, 15, 16, 2, 9functermc 49470 . . 3 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
18 brsnop 5477 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺)))
198, 11, 18mp2an 692 . . 3 (𝑧{⟨𝐹, 𝐺⟩}𝑤 ↔ (𝑧 = 𝐹𝑤 = 𝐺))
2017, 19bitr4di 289 . 2 (𝜑 → (𝑧(𝐷 Func 𝐸)𝑤𝑧{⟨𝐹, 𝐺⟩}𝑤))
211, 12, 20eqbrrdiv 5748 1 (𝜑 → (𝐷 Func 𝐸) = {⟨𝐹, 𝐺⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207  Catccat 17601   Func cfunc 17792  TermCatctermc 49434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17605  df-cid 17606  df-func 17796  df-thinc 49380  df-termc 49435
This theorem is referenced by:  functermceu  49472  fucterm  49504
  Copyright terms: Public domain W3C validator