Proof of Theorem pserdv
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dvfcn 25943 | . . . . 5
⊢ (ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ | 
| 2 |  | ssidd 4007 | . . . . . . . 8
⊢ (𝜑 → ℂ ⊆
ℂ) | 
| 3 |  | pserf.g | . . . . . . . . . 10
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | 
| 4 |  | pserf.f | . . . . . . . . . 10
⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | 
| 5 |  | pserf.a | . . . . . . . . . 10
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 6 |  | pserf.r | . . . . . . . . . 10
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) | 
| 7 |  | psercn.s | . . . . . . . . . 10
⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | 
| 8 |  | psercn.m | . . . . . . . . . 10
⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | 
| 9 | 3, 4, 5, 6, 7, 8 | psercn 26470 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | 
| 10 |  | cncff 24919 | . . . . . . . . 9
⊢ (𝐹 ∈ (𝑆–cn→ℂ) → 𝐹:𝑆⟶ℂ) | 
| 11 | 9, 10 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) | 
| 12 |  | cnvimass 6100 | . . . . . . . . . . 11
⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | 
| 13 |  | absf 15376 | . . . . . . . . . . . 12
⊢
abs:ℂ⟶ℝ | 
| 14 | 13 | fdmi 6747 | . . . . . . . . . . 11
⊢ dom abs =
ℂ | 
| 15 | 12, 14 | sseqtri 4032 | . . . . . . . . . 10
⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ | 
| 16 | 7, 15 | eqsstri 4030 | . . . . . . . . 9
⊢ 𝑆 ⊆
ℂ | 
| 17 | 16 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 18 | 2, 11, 17 | dvbss 25936 | . . . . . . 7
⊢ (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑆) | 
| 19 |  | ssidd 4007 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ℂ ⊆
ℂ) | 
| 20 | 11 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐹:𝑆⟶ℂ) | 
| 21 | 16 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑆 ⊆ ℂ) | 
| 22 |  | pserdv.b | . . . . . . . . . . . 12
⊢ 𝐵 = (0(ball‘(abs ∘
− ))(((abs‘𝑎) +
𝑀) / 2)) | 
| 23 |  | cnxmet 24793 | . . . . . . . . . . . . 13
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) | 
| 24 |  | 0cnd 11254 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℂ) | 
| 25 | 17 | sselda 3983 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) | 
| 26 | 25 | abscld 15475 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) | 
| 27 | 3, 4, 5, 6, 7, 8 | psercnlem1 26469 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧
(abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | 
| 28 | 27 | simp1d 1143 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈
ℝ+) | 
| 29 | 28 | rpred 13077 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) | 
| 30 | 26, 29 | readdcld 11290 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ) | 
| 31 |  | 0red 11264 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℝ) | 
| 32 | 25 | absge0d 15483 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) | 
| 33 | 26, 28 | ltaddrpd 13110 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀)) | 
| 34 | 31, 26, 30, 32, 33 | lelttrd 11419 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 < ((abs‘𝑎) + 𝑀)) | 
| 35 | 30, 34 | elrpd 13074 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈
ℝ+) | 
| 36 | 35 | rphalfcld 13089 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈
ℝ+) | 
| 37 | 36 | rpxrd 13078 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈
ℝ*) | 
| 38 |  | blssm 24428 | . . . . . . . . . . . . 13
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ (((abs‘𝑎) +
𝑀) / 2) ∈
ℝ*) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ⊆
ℂ) | 
| 39 | 23, 24, 37, 38 | mp3an2i 1468 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ⊆
ℂ) | 
| 40 | 22, 39 | eqsstrid 4022 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐵 ⊆ ℂ) | 
| 41 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 42 | 41 | cnfldtopon 24803 | . . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) | 
| 43 | 42 | toponrestid 22927 | . . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) | 
| 44 | 41, 43 | dvres 25946 | . . . . . . . . . . 11
⊢
(((ℂ ⊆ ℂ ∧ 𝐹:𝑆⟶ℂ) ∧ (𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵))) | 
| 45 | 19, 20, 21, 40, 44 | syl22anc 839 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵))) | 
| 46 |  | resss 6019 | . . . . . . . . . 10
⊢ ((ℂ
D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵)) ⊆ (ℂ D 𝐹) | 
| 47 | 45, 46 | eqsstrdi 4028 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) ⊆ (ℂ D 𝐹)) | 
| 48 |  | dmss 5913 | . . . . . . . . 9
⊢ ((ℂ
D (𝐹 ↾ 𝐵)) ⊆ (ℂ D 𝐹) → dom (ℂ D (𝐹 ↾ 𝐵)) ⊆ dom (ℂ D 𝐹)) | 
| 49 | 47, 48 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → dom (ℂ D (𝐹 ↾ 𝐵)) ⊆ dom (ℂ D 𝐹)) | 
| 50 | 3, 4, 5, 6, 7, 8 | pserdvlem1 26471 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧
(abs‘𝑎) <
(((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) | 
| 51 | 3, 4, 5, 6, 7, 50 | psercnlem2 26468 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs
∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆)) | 
| 52 | 51 | simp1d 1143 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2))) | 
| 53 | 52, 22 | eleqtrrdi 2852 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝐵) | 
| 54 | 3, 4, 5, 6, 7, 8, 22 | pserdvlem2 26472 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | 
| 55 | 54 | dmeqd 5916 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → dom (ℂ D (𝐹 ↾ 𝐵)) = dom (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | 
| 56 |  | dmmptg 6262 | . . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐵 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) ∈ V → dom (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) = 𝐵) | 
| 57 |  | sumex 15724 | . . . . . . . . . . . 12
⊢
Σ𝑘 ∈
ℕ0 (((𝑘 +
1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) ∈ V | 
| 58 | 57 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) ∈ V) | 
| 59 | 56, 58 | mprg 3067 | . . . . . . . . . 10
⊢ dom
(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) = 𝐵 | 
| 60 | 55, 59 | eqtrdi 2793 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → dom (ℂ D (𝐹 ↾ 𝐵)) = 𝐵) | 
| 61 | 53, 60 | eleqtrrd 2844 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ dom (ℂ D (𝐹 ↾ 𝐵))) | 
| 62 | 49, 61 | sseldd 3984 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ dom (ℂ D 𝐹)) | 
| 63 | 18, 62 | eqelssd 4005 | . . . . . 6
⊢ (𝜑 → dom (ℂ D 𝐹) = 𝑆) | 
| 64 | 63 | feq2d 6722 | . . . . 5
⊢ (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ
D 𝐹):𝑆⟶ℂ)) | 
| 65 | 1, 64 | mpbii 233 | . . . 4
⊢ (𝜑 → (ℂ D 𝐹):𝑆⟶ℂ) | 
| 66 | 65 | feqmptd 6977 | . . 3
⊢ (𝜑 → (ℂ D 𝐹) = (𝑎 ∈ 𝑆 ↦ ((ℂ D 𝐹)‘𝑎))) | 
| 67 |  | ffun 6739 | . . . . . . 7
⊢ ((ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun
(ℂ D 𝐹)) | 
| 68 | 1, 67 | mp1i 13 | . . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → Fun (ℂ D 𝐹)) | 
| 69 |  | funssfv 6927 | . . . . . 6
⊢ ((Fun
(ℂ D 𝐹) ∧
(ℂ D (𝐹 ↾ 𝐵)) ⊆ (ℂ D 𝐹) ∧ 𝑎 ∈ dom (ℂ D (𝐹 ↾ 𝐵))) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹 ↾ 𝐵))‘𝑎)) | 
| 70 | 68, 47, 61, 69 | syl3anc 1373 | . . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹 ↾ 𝐵))‘𝑎)) | 
| 71 | 54 | fveq1d 6908 | . . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((ℂ D (𝐹 ↾ 𝐵))‘𝑎) = ((𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))‘𝑎)) | 
| 72 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑦 = 𝑎 → (𝑦↑𝑘) = (𝑎↑𝑘)) | 
| 73 | 72 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑦 = 𝑎 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) | 
| 74 | 73 | sumeq2sdv 15739 | . . . . . . 7
⊢ (𝑦 = 𝑎 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) | 
| 75 |  | eqid 2737 | . . . . . . 7
⊢ (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) | 
| 76 |  | sumex 15724 | . . . . . . 7
⊢
Σ𝑘 ∈
ℕ0 (((𝑘 +
1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)) ∈ V | 
| 77 | 74, 75, 76 | fvmpt 7016 | . . . . . 6
⊢ (𝑎 ∈ 𝐵 → ((𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) | 
| 78 | 53, 77 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) | 
| 79 | 70, 71, 78 | 3eqtrd 2781 | . . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((ℂ D 𝐹)‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) | 
| 80 | 79 | mpteq2dva 5242 | . . 3
⊢ (𝜑 → (𝑎 ∈ 𝑆 ↦ ((ℂ D 𝐹)‘𝑎)) = (𝑎 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)))) | 
| 81 | 66, 80 | eqtrd 2777 | . 2
⊢ (𝜑 → (ℂ D 𝐹) = (𝑎 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)))) | 
| 82 |  | oveq1 7438 | . . . . 5
⊢ (𝑎 = 𝑦 → (𝑎↑𝑘) = (𝑦↑𝑘)) | 
| 83 | 82 | oveq2d 7447 | . . . 4
⊢ (𝑎 = 𝑦 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) | 
| 84 | 83 | sumeq2sdv 15739 | . . 3
⊢ (𝑎 = 𝑦 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) | 
| 85 | 84 | cbvmptv 5255 | . 2
⊢ (𝑎 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) | 
| 86 | 81, 85 | eqtrdi 2793 | 1
⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |