MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv Structured version   Visualization version   GIF version

Theorem pserdv 25275
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdv (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdv
StepHypRef Expression
1 dvfcn 24759 . . . . 5 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2 ssidd 3910 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
3 pserf.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 pserf.f . . . . . . . . . 10 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
5 pserf.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℂ)
6 pserf.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
7 psercn.s . . . . . . . . . 10 𝑆 = (abs “ (0[,)𝑅))
8 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
93, 4, 5, 6, 7, 8psercn 25272 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆cn→ℂ))
10 cncff 23744 . . . . . . . . 9 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
119, 10syl 17 . . . . . . . 8 (𝜑𝐹:𝑆⟶ℂ)
12 cnvimass 5934 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ dom abs
13 absf 14866 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
1413fdmi 6535 . . . . . . . . . . 11 dom abs = ℂ
1512, 14sseqtri 3923 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ ℂ
167, 15eqsstri 3921 . . . . . . . . 9 𝑆 ⊆ ℂ
1716a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
182, 11, 17dvbss 24752 . . . . . . 7 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑆)
19 ssidd 3910 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → ℂ ⊆ ℂ)
2011adantr 484 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
2116a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑆 ⊆ ℂ)
22 pserdv.b . . . . . . . . . . . 12 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
23 cnxmet 23624 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
24 0cnd 10791 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
2517sselda 3887 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
2625abscld 14965 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
273, 4, 5, 6, 7, 8psercnlem1 25271 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
2827simp1d 1144 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
2928rpred 12593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
3026, 29readdcld 10827 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
31 0red 10801 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
3225absge0d 14973 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
3326, 28ltaddrpd 12626 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
3431, 26, 30, 32, 33lelttrd 10955 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
3530, 34elrpd 12590 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
3635rphalfcld 12605 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
3736rpxrd 12594 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
38 blssm 23270 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
3923, 24, 37, 38mp3an2i 1468 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
4022, 39eqsstrid 3935 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
41 eqid 2736 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241cnfldtopon 23634 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342toponrestid 21772 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4441, 43dvres 24762 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ 𝐹:𝑆⟶ℂ) ∧ (𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
4519, 20, 21, 40, 44syl22anc 839 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
46 resss 5861 . . . . . . . . . 10 ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) ⊆ (ℂ D 𝐹)
4745, 46eqsstrdi 3941 . . . . . . . . 9 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹))
48 dmss 5756 . . . . . . . . 9 ((ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
503, 4, 5, 6, 7, 8pserdvlem1 25273 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
513, 4, 5, 6, 7, 50psercnlem2 25270 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
5251simp1d 1144 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
5352, 22eleqtrrdi 2842 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑎𝐵)
543, 4, 5, 6, 7, 8, 22pserdvlem2 25274 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
5554dmeqd 5759 . . . . . . . . . 10 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
56 dmmptg 6085 . . . . . . . . . . 11 (∀𝑦𝐵 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V → dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵)
57 sumex 15216 . . . . . . . . . . . 12 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
5857a1i 11 . . . . . . . . . . 11 (𝑦𝐵 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V)
5956, 58mprg 3065 . . . . . . . . . 10 dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵
6055, 59eqtrdi 2787 . . . . . . . . 9 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = 𝐵)
6153, 60eleqtrrd 2834 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D (𝐹𝐵)))
6249, 61sseldd 3888 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D 𝐹))
6318, 62eqelssd 3908 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) = 𝑆)
6463feq2d 6509 . . . . 5 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑆⟶ℂ))
651, 64mpbii 236 . . . 4 (𝜑 → (ℂ D 𝐹):𝑆⟶ℂ)
6665feqmptd 6758 . . 3 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)))
67 ffun 6526 . . . . . . 7 ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun (ℂ D 𝐹))
681, 67mp1i 13 . . . . . 6 ((𝜑𝑎𝑆) → Fun (ℂ D 𝐹))
69 funssfv 6716 . . . . . 6 ((Fun (ℂ D 𝐹) ∧ (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) ∧ 𝑎 ∈ dom (ℂ D (𝐹𝐵))) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7068, 47, 61, 69syl3anc 1373 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7154fveq1d 6697 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D (𝐹𝐵))‘𝑎) = ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎))
72 oveq1 7198 . . . . . . . . 9 (𝑦 = 𝑎 → (𝑦𝑘) = (𝑎𝑘))
7372oveq2d 7207 . . . . . . . 8 (𝑦 = 𝑎 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7473sumeq2sdv 15233 . . . . . . 7 (𝑦 = 𝑎 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
75 eqid 2736 . . . . . . 7 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
76 sumex 15216 . . . . . . 7 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) ∈ V
7774, 75, 76fvmpt 6796 . . . . . 6 (𝑎𝐵 → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7853, 77syl 17 . . . . 5 ((𝜑𝑎𝑆) → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7970, 71, 783eqtrd 2775 . . . 4 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
8079mpteq2dva 5135 . . 3 (𝜑 → (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
8166, 80eqtrd 2771 . 2 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
82 oveq1 7198 . . . . 5 (𝑎 = 𝑦 → (𝑎𝑘) = (𝑦𝑘))
8382oveq2d 7207 . . . 4 (𝑎 = 𝑦 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8483sumeq2sdv 15233 . . 3 (𝑎 = 𝑦 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8584cbvmptv 5143 . 2 (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8681, 85eqtrdi 2787 1 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {crab 3055  Vcvv 3398  wss 3853  ifcif 4425   class class class wbr 5039  cmpt 5120  ccnv 5535  dom cdm 5536  cres 5538  cima 5539  ccom 5540  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7191  supcsup 9034  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699  *cxr 10831   < clt 10832  cmin 11027   / cdiv 11454  2c2 11850  0cn0 12055  +crp 12551  [,)cico 12902  [,]cicc 12903  seqcseq 13539  cexp 13600  abscabs 14762  cli 15010  Σcsu 15214  TopOpenctopn 16880  ∞Metcxmet 20302  ballcbl 20304  fldccnfld 20317  intcnt 21868  cnccncf 23727   D cdv 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-cmp 22238  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718  df-ulm 25223
This theorem is referenced by:  pserdv2  25276
  Copyright terms: Public domain W3C validator