MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv Structured version   Visualization version   GIF version

Theorem pserdv 26355
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdv (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdv
StepHypRef Expression
1 dvfcn 25825 . . . . 5 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2 ssidd 3961 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
3 pserf.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 pserf.f . . . . . . . . . 10 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
5 pserf.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℂ)
6 pserf.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
7 psercn.s . . . . . . . . . 10 𝑆 = (abs “ (0[,)𝑅))
8 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
93, 4, 5, 6, 7, 8psercn 26352 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆cn→ℂ))
10 cncff 24802 . . . . . . . . 9 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
119, 10syl 17 . . . . . . . 8 (𝜑𝐹:𝑆⟶ℂ)
12 cnvimass 6037 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ dom abs
13 absf 15263 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
1413fdmi 6667 . . . . . . . . . . 11 dom abs = ℂ
1512, 14sseqtri 3986 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ ℂ
167, 15eqsstri 3984 . . . . . . . . 9 𝑆 ⊆ ℂ
1716a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
182, 11, 17dvbss 25818 . . . . . . 7 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑆)
19 ssidd 3961 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → ℂ ⊆ ℂ)
2011adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
2116a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑆 ⊆ ℂ)
22 pserdv.b . . . . . . . . . . . 12 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
23 cnxmet 24676 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
24 0cnd 11127 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
2517sselda 3937 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
2625abscld 15364 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
273, 4, 5, 6, 7, 8psercnlem1 26351 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
2827simp1d 1142 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
2928rpred 12955 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
3026, 29readdcld 11163 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
31 0red 11137 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
3225absge0d 15372 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
3326, 28ltaddrpd 12988 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
3431, 26, 30, 32, 33lelttrd 11292 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
3530, 34elrpd 12952 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
3635rphalfcld 12967 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
3736rpxrd 12956 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
38 blssm 24322 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
3923, 24, 37, 38mp3an2i 1468 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
4022, 39eqsstrid 3976 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
41 eqid 2729 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241cnfldtopon 24686 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342toponrestid 22824 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4441, 43dvres 25828 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ 𝐹:𝑆⟶ℂ) ∧ (𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
4519, 20, 21, 40, 44syl22anc 838 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
46 resss 5956 . . . . . . . . . 10 ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) ⊆ (ℂ D 𝐹)
4745, 46eqsstrdi 3982 . . . . . . . . 9 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹))
48 dmss 5849 . . . . . . . . 9 ((ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
503, 4, 5, 6, 7, 8pserdvlem1 26353 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
513, 4, 5, 6, 7, 50psercnlem2 26350 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
5251simp1d 1142 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
5352, 22eleqtrrdi 2839 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑎𝐵)
543, 4, 5, 6, 7, 8, 22pserdvlem2 26354 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
5554dmeqd 5852 . . . . . . . . . 10 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
56 dmmptg 6195 . . . . . . . . . . 11 (∀𝑦𝐵 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V → dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵)
57 sumex 15613 . . . . . . . . . . . 12 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
5857a1i 11 . . . . . . . . . . 11 (𝑦𝐵 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V)
5956, 58mprg 3050 . . . . . . . . . 10 dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵
6055, 59eqtrdi 2780 . . . . . . . . 9 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = 𝐵)
6153, 60eleqtrrd 2831 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D (𝐹𝐵)))
6249, 61sseldd 3938 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D 𝐹))
6318, 62eqelssd 3959 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) = 𝑆)
6463feq2d 6640 . . . . 5 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑆⟶ℂ))
651, 64mpbii 233 . . . 4 (𝜑 → (ℂ D 𝐹):𝑆⟶ℂ)
6665feqmptd 6895 . . 3 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)))
67 ffun 6659 . . . . . . 7 ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun (ℂ D 𝐹))
681, 67mp1i 13 . . . . . 6 ((𝜑𝑎𝑆) → Fun (ℂ D 𝐹))
69 funssfv 6847 . . . . . 6 ((Fun (ℂ D 𝐹) ∧ (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) ∧ 𝑎 ∈ dom (ℂ D (𝐹𝐵))) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7068, 47, 61, 69syl3anc 1373 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7154fveq1d 6828 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D (𝐹𝐵))‘𝑎) = ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎))
72 oveq1 7360 . . . . . . . . 9 (𝑦 = 𝑎 → (𝑦𝑘) = (𝑎𝑘))
7372oveq2d 7369 . . . . . . . 8 (𝑦 = 𝑎 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7473sumeq2sdv 15628 . . . . . . 7 (𝑦 = 𝑎 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
75 eqid 2729 . . . . . . 7 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
76 sumex 15613 . . . . . . 7 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) ∈ V
7774, 75, 76fvmpt 6934 . . . . . 6 (𝑎𝐵 → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7853, 77syl 17 . . . . 5 ((𝜑𝑎𝑆) → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7970, 71, 783eqtrd 2768 . . . 4 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
8079mpteq2dva 5188 . . 3 (𝜑 → (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
8166, 80eqtrd 2764 . 2 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
82 oveq1 7360 . . . . 5 (𝑎 = 𝑦 → (𝑎𝑘) = (𝑦𝑘))
8382oveq2d 7369 . . . 4 (𝑎 = 𝑦 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8483sumeq2sdv 15628 . . 3 (𝑎 = 𝑦 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8584cbvmptv 5199 . 2 (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8681, 85eqtrdi 2780 1 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  wss 3905  ifcif 4478   class class class wbr 5095  cmpt 5176  ccnv 5622  dom cdm 5623  cres 5625  cima 5626  ccom 5627  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cmin 11365   / cdiv 11795  2c2 12201  0cn0 12402  +crp 12911  [,)cico 13268  [,]cicc 13269  seqcseq 13926  cexp 13986  abscabs 15159  cli 15409  Σcsu 15611  TopOpenctopn 17343  ∞Metcxmet 21264  ballcbl 21266  fldccnfld 21279  intcnt 22920  cnccncf 24785   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-ulm 26302
This theorem is referenced by:  pserdv2  26356
  Copyright terms: Public domain W3C validator