MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv Structured version   Visualization version   GIF version

Theorem pserdv 26396
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdv (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdv
StepHypRef Expression
1 dvfcn 25866 . . . . 5 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2 ssidd 3987 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
3 pserf.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 pserf.f . . . . . . . . . 10 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
5 pserf.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℂ)
6 pserf.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
7 psercn.s . . . . . . . . . 10 𝑆 = (abs “ (0[,)𝑅))
8 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
93, 4, 5, 6, 7, 8psercn 26393 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆cn→ℂ))
10 cncff 24842 . . . . . . . . 9 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
119, 10syl 17 . . . . . . . 8 (𝜑𝐹:𝑆⟶ℂ)
12 cnvimass 6074 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ dom abs
13 absf 15361 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
1413fdmi 6722 . . . . . . . . . . 11 dom abs = ℂ
1512, 14sseqtri 4012 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ ℂ
167, 15eqsstri 4010 . . . . . . . . 9 𝑆 ⊆ ℂ
1716a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
182, 11, 17dvbss 25859 . . . . . . 7 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑆)
19 ssidd 3987 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → ℂ ⊆ ℂ)
2011adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
2116a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑆 ⊆ ℂ)
22 pserdv.b . . . . . . . . . . . 12 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
23 cnxmet 24716 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
24 0cnd 11233 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
2517sselda 3963 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
2625abscld 15460 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
273, 4, 5, 6, 7, 8psercnlem1 26392 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
2827simp1d 1142 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
2928rpred 13056 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
3026, 29readdcld 11269 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
31 0red 11243 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
3225absge0d 15468 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
3326, 28ltaddrpd 13089 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
3431, 26, 30, 32, 33lelttrd 11398 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
3530, 34elrpd 13053 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
3635rphalfcld 13068 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
3736rpxrd 13057 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
38 blssm 24362 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
3923, 24, 37, 38mp3an2i 1468 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
4022, 39eqsstrid 4002 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
41 eqid 2736 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241cnfldtopon 24726 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342toponrestid 22864 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4441, 43dvres 25869 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ 𝐹:𝑆⟶ℂ) ∧ (𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
4519, 20, 21, 40, 44syl22anc 838 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
46 resss 5993 . . . . . . . . . 10 ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) ⊆ (ℂ D 𝐹)
4745, 46eqsstrdi 4008 . . . . . . . . 9 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹))
48 dmss 5887 . . . . . . . . 9 ((ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
503, 4, 5, 6, 7, 8pserdvlem1 26394 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
513, 4, 5, 6, 7, 50psercnlem2 26391 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
5251simp1d 1142 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
5352, 22eleqtrrdi 2846 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑎𝐵)
543, 4, 5, 6, 7, 8, 22pserdvlem2 26395 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
5554dmeqd 5890 . . . . . . . . . 10 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
56 dmmptg 6236 . . . . . . . . . . 11 (∀𝑦𝐵 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V → dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵)
57 sumex 15709 . . . . . . . . . . . 12 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
5857a1i 11 . . . . . . . . . . 11 (𝑦𝐵 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V)
5956, 58mprg 3058 . . . . . . . . . 10 dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵
6055, 59eqtrdi 2787 . . . . . . . . 9 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = 𝐵)
6153, 60eleqtrrd 2838 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D (𝐹𝐵)))
6249, 61sseldd 3964 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D 𝐹))
6318, 62eqelssd 3985 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) = 𝑆)
6463feq2d 6697 . . . . 5 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑆⟶ℂ))
651, 64mpbii 233 . . . 4 (𝜑 → (ℂ D 𝐹):𝑆⟶ℂ)
6665feqmptd 6952 . . 3 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)))
67 ffun 6714 . . . . . . 7 ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun (ℂ D 𝐹))
681, 67mp1i 13 . . . . . 6 ((𝜑𝑎𝑆) → Fun (ℂ D 𝐹))
69 funssfv 6902 . . . . . 6 ((Fun (ℂ D 𝐹) ∧ (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) ∧ 𝑎 ∈ dom (ℂ D (𝐹𝐵))) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7068, 47, 61, 69syl3anc 1373 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7154fveq1d 6883 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D (𝐹𝐵))‘𝑎) = ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎))
72 oveq1 7417 . . . . . . . . 9 (𝑦 = 𝑎 → (𝑦𝑘) = (𝑎𝑘))
7372oveq2d 7426 . . . . . . . 8 (𝑦 = 𝑎 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7473sumeq2sdv 15724 . . . . . . 7 (𝑦 = 𝑎 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
75 eqid 2736 . . . . . . 7 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
76 sumex 15709 . . . . . . 7 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) ∈ V
7774, 75, 76fvmpt 6991 . . . . . 6 (𝑎𝐵 → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7853, 77syl 17 . . . . 5 ((𝜑𝑎𝑆) → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7970, 71, 783eqtrd 2775 . . . 4 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
8079mpteq2dva 5219 . . 3 (𝜑 → (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
8166, 80eqtrd 2771 . 2 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
82 oveq1 7417 . . . . 5 (𝑎 = 𝑦 → (𝑎𝑘) = (𝑦𝑘))
8382oveq2d 7426 . . . 4 (𝑎 = 𝑦 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8483sumeq2sdv 15724 . . 3 (𝑎 = 𝑦 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8584cbvmptv 5230 . 2 (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8681, 85eqtrdi 2787 1 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  wss 3931  ifcif 4505   class class class wbr 5124  cmpt 5206  ccnv 5658  dom cdm 5659  cres 5661  cima 5662  ccom 5663  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410  supcsup 9457  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  *cxr 11273   < clt 11274  cmin 11471   / cdiv 11899  2c2 12300  0cn0 12506  +crp 13013  [,)cico 13369  [,]cicc 13370  seqcseq 14024  cexp 14084  abscabs 15258  cli 15505  Σcsu 15707  TopOpenctopn 17440  ∞Metcxmet 21305  ballcbl 21307  fldccnfld 21320  intcnt 22960  cnccncf 24825   D cdv 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-ulm 26343
This theorem is referenced by:  pserdv2  26397
  Copyright terms: Public domain W3C validator