MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv Structured version   Visualization version   GIF version

Theorem pserdv 25016
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdv (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdv
StepHypRef Expression
1 dvfcn 24505 . . . . 5 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2 ssidd 3989 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
3 pserf.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 pserf.f . . . . . . . . . 10 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
5 pserf.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℂ)
6 pserf.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
7 psercn.s . . . . . . . . . 10 𝑆 = (abs “ (0[,)𝑅))
8 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
93, 4, 5, 6, 7, 8psercn 25013 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑆cn→ℂ))
10 cncff 23500 . . . . . . . . 9 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
119, 10syl 17 . . . . . . . 8 (𝜑𝐹:𝑆⟶ℂ)
12 cnvimass 5948 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ dom abs
13 absf 14696 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
1413fdmi 6523 . . . . . . . . . . 11 dom abs = ℂ
1512, 14sseqtri 4002 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ ℂ
167, 15eqsstri 4000 . . . . . . . . 9 𝑆 ⊆ ℂ
1716a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
182, 11, 17dvbss 24498 . . . . . . 7 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑆)
19 ssidd 3989 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → ℂ ⊆ ℂ)
2011adantr 483 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
2116a1i 11 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑆 ⊆ ℂ)
22 pserdv.b . . . . . . . . . . . 12 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
23 cnxmet 23380 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
24 0cnd 10633 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
2517sselda 3966 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
2625abscld 14795 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
273, 4, 5, 6, 7, 8psercnlem1 25012 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
2827simp1d 1138 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
2928rpred 12430 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
3026, 29readdcld 10669 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
31 0red 10643 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
3225absge0d 14803 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
3326, 28ltaddrpd 12463 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
3431, 26, 30, 32, 33lelttrd 10797 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
3530, 34elrpd 12427 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
3635rphalfcld 12442 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
3736rpxrd 12431 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
38 blssm 23027 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
3923, 24, 37, 38mp3an2i 1462 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
4022, 39eqsstrid 4014 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
41 eqid 2821 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241cnfldtopon 23390 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4342toponrestid 21528 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4441, 43dvres 24508 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ 𝐹:𝑆⟶ℂ) ∧ (𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
4519, 20, 21, 40, 44syl22anc 836 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
46 resss 5877 . . . . . . . . . 10 ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) ⊆ (ℂ D 𝐹)
4745, 46eqsstrdi 4020 . . . . . . . . 9 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹))
48 dmss 5770 . . . . . . . . 9 ((ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) ⊆ dom (ℂ D 𝐹))
503, 4, 5, 6, 7, 8pserdvlem1 25014 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
513, 4, 5, 6, 7, 50psercnlem2 25011 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
5251simp1d 1138 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
5352, 22eleqtrrdi 2924 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑎𝐵)
543, 4, 5, 6, 7, 8, 22pserdvlem2 25015 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
5554dmeqd 5773 . . . . . . . . . 10 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
56 dmmptg 6095 . . . . . . . . . . 11 (∀𝑦𝐵 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V → dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵)
57 sumex 15043 . . . . . . . . . . . 12 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
5857a1i 11 . . . . . . . . . . 11 (𝑦𝐵 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V)
5956, 58mprg 3152 . . . . . . . . . 10 dom (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = 𝐵
6055, 59syl6eq 2872 . . . . . . . . 9 ((𝜑𝑎𝑆) → dom (ℂ D (𝐹𝐵)) = 𝐵)
6153, 60eleqtrrd 2916 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D (𝐹𝐵)))
6249, 61sseldd 3967 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ dom (ℂ D 𝐹))
6318, 62eqelssd 3987 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) = 𝑆)
6463feq2d 6499 . . . . 5 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):𝑆⟶ℂ))
651, 64mpbii 235 . . . 4 (𝜑 → (ℂ D 𝐹):𝑆⟶ℂ)
6665feqmptd 6732 . . 3 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)))
67 ffun 6516 . . . . . . 7 ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun (ℂ D 𝐹))
681, 67mp1i 13 . . . . . 6 ((𝜑𝑎𝑆) → Fun (ℂ D 𝐹))
69 funssfv 6690 . . . . . 6 ((Fun (ℂ D 𝐹) ∧ (ℂ D (𝐹𝐵)) ⊆ (ℂ D 𝐹) ∧ 𝑎 ∈ dom (ℂ D (𝐹𝐵))) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7068, 47, 61, 69syl3anc 1367 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹𝐵))‘𝑎))
7154fveq1d 6671 . . . . 5 ((𝜑𝑎𝑆) → ((ℂ D (𝐹𝐵))‘𝑎) = ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎))
72 oveq1 7162 . . . . . . . . 9 (𝑦 = 𝑎 → (𝑦𝑘) = (𝑎𝑘))
7372oveq2d 7171 . . . . . . . 8 (𝑦 = 𝑎 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7473sumeq2sdv 15060 . . . . . . 7 (𝑦 = 𝑎 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
75 eqid 2821 . . . . . . 7 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
76 sumex 15043 . . . . . . 7 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) ∈ V
7774, 75, 76fvmpt 6767 . . . . . 6 (𝑎𝐵 → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7853, 77syl 17 . . . . 5 ((𝜑𝑎𝑆) → ((𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
7970, 71, 783eqtrd 2860 . . . 4 ((𝜑𝑎𝑆) → ((ℂ D 𝐹)‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)))
8079mpteq2dva 5160 . . 3 (𝜑 → (𝑎𝑆 ↦ ((ℂ D 𝐹)‘𝑎)) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
8166, 80eqtrd 2856 . 2 (𝜑 → (ℂ D 𝐹) = (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))))
82 oveq1 7162 . . . . 5 (𝑎 = 𝑦 → (𝑎𝑘) = (𝑦𝑘))
8382oveq2d 7171 . . . 4 (𝑎 = 𝑦 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8483sumeq2sdv 15060 . . 3 (𝑎 = 𝑦 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8584cbvmptv 5168 . 2 (𝑎𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎𝑘))) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
8681, 85syl6eq 2872 1 (𝜑 → (ℂ D 𝐹) = (𝑦𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  wss 3935  ifcif 4466   class class class wbr 5065  cmpt 5145  ccnv 5553  dom cdm 5554  cres 5556  cima 5557  ccom 5558  Fun wfun 6348  wf 6350  cfv 6354  (class class class)co 7155  supcsup 8903  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  *cxr 10673   < clt 10674  cmin 10869   / cdiv 11296  2c2 11691  0cn0 11896  +crp 12388  [,)cico 12739  [,]cicc 12740  seqcseq 13368  cexp 13428  abscabs 14592  cli 14840  Σcsu 15041  TopOpenctopn 16694  ∞Metcxmet 20529  ballcbl 20531  fldccnfld 20544  intcnt 21624  cnccncf 23483   D cdv 24460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-cmp 21994  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-ulm 24964
This theorem is referenced by:  pserdv2  25017
  Copyright terms: Public domain W3C validator