Proof of Theorem pserdv
Step | Hyp | Ref
| Expression |
1 | | dvfcn 24977 |
. . . . 5
⊢ (ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ |
2 | | ssidd 3940 |
. . . . . . . 8
⊢ (𝜑 → ℂ ⊆
ℂ) |
3 | | pserf.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
4 | | pserf.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
5 | | pserf.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
6 | | pserf.r |
. . . . . . . . . 10
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
7 | | psercn.s |
. . . . . . . . . 10
⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
8 | | psercn.m |
. . . . . . . . . 10
⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
9 | 3, 4, 5, 6, 7, 8 | psercn 25490 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
10 | | cncff 23962 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆–cn→ℂ) → 𝐹:𝑆⟶ℂ) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
12 | | cnvimass 5978 |
. . . . . . . . . . 11
⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs |
13 | | absf 14977 |
. . . . . . . . . . . 12
⊢
abs:ℂ⟶ℝ |
14 | 13 | fdmi 6596 |
. . . . . . . . . . 11
⊢ dom abs =
ℂ |
15 | 12, 14 | sseqtri 3953 |
. . . . . . . . . 10
⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
16 | 7, 15 | eqsstri 3951 |
. . . . . . . . 9
⊢ 𝑆 ⊆
ℂ |
17 | 16 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
18 | 2, 11, 17 | dvbss 24970 |
. . . . . . 7
⊢ (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑆) |
19 | | ssidd 3940 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ℂ ⊆
ℂ) |
20 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐹:𝑆⟶ℂ) |
21 | 16 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑆 ⊆ ℂ) |
22 | | pserdv.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (0(ball‘(abs ∘
− ))(((abs‘𝑎) +
𝑀) / 2)) |
23 | | cnxmet 23842 |
. . . . . . . . . . . . 13
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
24 | | 0cnd 10899 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℂ) |
25 | 17 | sselda 3917 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
26 | 25 | abscld 15076 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
27 | 3, 4, 5, 6, 7, 8 | psercnlem1 25489 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧
(abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
28 | 27 | simp1d 1140 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈
ℝ+) |
29 | 28 | rpred 12701 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) |
30 | 26, 29 | readdcld 10935 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ) |
31 | | 0red 10909 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℝ) |
32 | 25 | absge0d 15084 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
33 | 26, 28 | ltaddrpd 12734 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀)) |
34 | 31, 26, 30, 32, 33 | lelttrd 11063 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 < ((abs‘𝑎) + 𝑀)) |
35 | 30, 34 | elrpd 12698 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈
ℝ+) |
36 | 35 | rphalfcld 12713 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈
ℝ+) |
37 | 36 | rpxrd 12702 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈
ℝ*) |
38 | | blssm 23479 |
. . . . . . . . . . . . 13
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ
∧ (((abs‘𝑎) +
𝑀) / 2) ∈
ℝ*) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ⊆
ℂ) |
39 | 23, 24, 37, 38 | mp3an2i 1464 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ⊆
ℂ) |
40 | 22, 39 | eqsstrid 3965 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐵 ⊆ ℂ) |
41 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
42 | 41 | cnfldtopon 23852 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
43 | 42 | toponrestid 21978 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
44 | 41, 43 | dvres 24980 |
. . . . . . . . . . 11
⊢
(((ℂ ⊆ ℂ ∧ 𝐹:𝑆⟶ℂ) ∧ (𝑆 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵))) |
45 | 19, 20, 21, 40, 44 | syl22anc 835 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵))) |
46 | | resss 5905 |
. . . . . . . . . 10
⊢ ((ℂ
D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵)) ⊆ (ℂ D 𝐹) |
47 | 45, 46 | eqsstrdi 3971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) ⊆ (ℂ D 𝐹)) |
48 | | dmss 5800 |
. . . . . . . . 9
⊢ ((ℂ
D (𝐹 ↾ 𝐵)) ⊆ (ℂ D 𝐹) → dom (ℂ D (𝐹 ↾ 𝐵)) ⊆ dom (ℂ D 𝐹)) |
49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → dom (ℂ D (𝐹 ↾ 𝐵)) ⊆ dom (ℂ D 𝐹)) |
50 | 3, 4, 5, 6, 7, 8 | pserdvlem1 25491 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧
(abs‘𝑎) <
(((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
51 | 3, 4, 5, 6, 7, 50 | psercnlem2 25488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs
∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (◡abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆)) |
52 | 51 | simp1d 1140 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ −
))(((abs‘𝑎) + 𝑀) / 2))) |
53 | 52, 22 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝐵) |
54 | 3, 4, 5, 6, 7, 8, 22 | pserdvlem2 25492 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |
55 | 54 | dmeqd 5803 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → dom (ℂ D (𝐹 ↾ 𝐵)) = dom (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |
56 | | dmmptg 6134 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐵 Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) ∈ V → dom (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) = 𝐵) |
57 | | sumex 15327 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
ℕ0 (((𝑘 +
1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) ∈ V |
58 | 57 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) ∈ V) |
59 | 56, 58 | mprg 3077 |
. . . . . . . . . 10
⊢ dom
(𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) = 𝐵 |
60 | 55, 59 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → dom (ℂ D (𝐹 ↾ 𝐵)) = 𝐵) |
61 | 53, 60 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ dom (ℂ D (𝐹 ↾ 𝐵))) |
62 | 49, 61 | sseldd 3918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ dom (ℂ D 𝐹)) |
63 | 18, 62 | eqelssd 3938 |
. . . . . 6
⊢ (𝜑 → dom (ℂ D 𝐹) = 𝑆) |
64 | 63 | feq2d 6570 |
. . . . 5
⊢ (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ
D 𝐹):𝑆⟶ℂ)) |
65 | 1, 64 | mpbii 232 |
. . . 4
⊢ (𝜑 → (ℂ D 𝐹):𝑆⟶ℂ) |
66 | 65 | feqmptd 6819 |
. . 3
⊢ (𝜑 → (ℂ D 𝐹) = (𝑎 ∈ 𝑆 ↦ ((ℂ D 𝐹)‘𝑎))) |
67 | | ffun 6587 |
. . . . . . 7
⊢ ((ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun
(ℂ D 𝐹)) |
68 | 1, 67 | mp1i 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → Fun (ℂ D 𝐹)) |
69 | | funssfv 6777 |
. . . . . 6
⊢ ((Fun
(ℂ D 𝐹) ∧
(ℂ D (𝐹 ↾ 𝐵)) ⊆ (ℂ D 𝐹) ∧ 𝑎 ∈ dom (ℂ D (𝐹 ↾ 𝐵))) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹 ↾ 𝐵))‘𝑎)) |
70 | 68, 47, 61, 69 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((ℂ D 𝐹)‘𝑎) = ((ℂ D (𝐹 ↾ 𝐵))‘𝑎)) |
71 | 54 | fveq1d 6758 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((ℂ D (𝐹 ↾ 𝐵))‘𝑎) = ((𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))‘𝑎)) |
72 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑦 = 𝑎 → (𝑦↑𝑘) = (𝑎↑𝑘)) |
73 | 72 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑦 = 𝑎 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) |
74 | 73 | sumeq2sdv 15344 |
. . . . . . 7
⊢ (𝑦 = 𝑎 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) |
75 | | eqid 2738 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
76 | | sumex 15327 |
. . . . . . 7
⊢
Σ𝑘 ∈
ℕ0 (((𝑘 +
1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)) ∈ V |
77 | 74, 75, 76 | fvmpt 6857 |
. . . . . 6
⊢ (𝑎 ∈ 𝐵 → ((𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) |
78 | 53, 77 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) |
79 | 70, 71, 78 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((ℂ D 𝐹)‘𝑎) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) |
80 | 79 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑎 ∈ 𝑆 ↦ ((ℂ D 𝐹)‘𝑎)) = (𝑎 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)))) |
81 | 66, 80 | eqtrd 2778 |
. 2
⊢ (𝜑 → (ℂ D 𝐹) = (𝑎 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)))) |
82 | | oveq1 7262 |
. . . . 5
⊢ (𝑎 = 𝑦 → (𝑎↑𝑘) = (𝑦↑𝑘)) |
83 | 82 | oveq2d 7271 |
. . . 4
⊢ (𝑎 = 𝑦 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
84 | 83 | sumeq2sdv 15344 |
. . 3
⊢ (𝑎 = 𝑦 → Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘)) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
85 | 84 | cbvmptv 5183 |
. 2
⊢ (𝑎 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑎↑𝑘))) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘))) |
86 | 81, 85 | eqtrdi 2795 |
1
⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) |