![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11465 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | simpr 483 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcomd 11422 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
4 | pncan3 11474 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
5 | 4 | ancoms 457 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
6 | 3, 5 | eqtrd 2770 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 (class class class)co 7413 ℂcc 11112 + caddc 11117 − cmin 11450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-ltxr 11259 df-sub 11452 |
This theorem is referenced by: addsubass 11476 npncan 11487 nppcan 11488 nnpcan 11489 subcan2 11491 nnncan 11501 npcand 11581 nn1suc 12240 zlem1lt 12620 zltlem1 12621 peano5uzi 12657 nummac 12728 uzp1 12869 peano2uzr 12893 qbtwnre 13184 fz01en 13535 fzsuc2 13565 fseq1m1p1 13582 predfz 13632 fzoss2 13666 fzoaddel2 13694 fzosplitsnm1 13713 fldiv 13831 modfzo0difsn 13914 seqm1 13991 monoord2 14005 sermono 14006 seqf1olem1 14013 seqf1olem2 14014 seqz 14022 expm1t 14062 expubnd 14148 bcm1k 14281 bcn2 14285 hashfzo 14395 hashbclem 14417 hashf1 14424 seqcoll 14431 swrdfv2 14617 swrdspsleq 14621 swrdlsw 14623 addlenrevpfx 14646 ccatpfx 14657 cshwlen 14755 cshwidxmodr 14760 cshwidxm 14764 swrd2lsw 14909 shftlem 15021 shftfval 15023 seqshft 15038 iserex 15609 serf0 15633 iseralt 15637 sumrblem 15663 fsumm1 15703 mptfzshft 15730 binomlem 15781 binom1dif 15785 isumsplit 15792 climcndslem1 15801 binomrisefac 15992 bpolycl 16002 bpolysum 16003 bpolydiflem 16004 bpoly2 16007 bpoly3 16008 fsumcube 16010 ruclem12 16190 dvdssub2 16250 4sqlem19 16902 vdwapun 16913 vdwapid1 16914 vdwlem5 16924 vdwlem8 16927 vdwnnlem2 16935 ramub1lem2 16966 1259lem4 17073 1259prm 17075 2503prm 17079 4001prm 17084 gsumsgrpccat 18759 sylow1lem1 19509 efgsres 19649 efgredleme 19654 gsummptshft 19847 ablsimpgfindlem1 20020 icccvx 24697 reparphti 24745 reparphtiOLD 24746 ovolunlem1 25248 advlog 26396 cxpaddlelem 26493 ang180lem1 26548 ang180lem3 26550 asinlem2 26608 tanatan 26658 ppiub 26941 perfect1 26965 lgsquad2lem1 27121 rplogsumlem1 27221 selberg2lem 27287 logdivbnd 27293 pntrsumo1 27302 pntrsumbnd2 27304 ax5seglem3 28454 ax5seglem5 28456 axbtwnid 28462 axlowdimlem16 28480 axeuclidlem 28485 axcontlem2 28488 crctcshwlkn0lem6 29334 clwwlknonex2lem2 29626 clwwlknonex2 29627 eucrctshift 29761 cvmliftlem7 34578 nndivsub 35647 ltflcei 36781 itg2addnclem3 36846 mettrifi 36930 irrapxlem1 41864 rmspecsqrtnq 41948 jm2.24nn 42002 jm2.18 42031 jm2.23 42039 jm2.27c 42050 monoord2xrv 44494 itgsinexp 44971 2elfz2melfz 46326 sbgoldbwt 46745 sgoldbeven3prm 46751 evengpop3 46766 evengpoap3 46767 zlmodzxzsub 47126 ackval42 47471 |
Copyright terms: Public domain | W3C validator |