![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11535 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcomd 11492 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
4 | pncan3 11544 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
6 | 3, 5 | eqtrd 2780 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 − cmin 11520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 |
This theorem is referenced by: addsubass 11546 npncan 11557 nppcan 11558 nnpcan 11559 subcan2 11561 nnncan 11571 npcand 11651 nn1suc 12315 zlem1lt 12695 zltlem1 12696 peano5uzi 12732 nummac 12803 uzp1 12944 peano2uzr 12968 qbtwnre 13261 fz01en 13612 fzsuc2 13642 fseq1m1p1 13659 predfz 13710 fzoss2 13744 fzoaddel2 13772 fzosplitsnm1 13791 fldiv 13911 modfzo0difsn 13994 seqm1 14070 monoord2 14084 sermono 14085 seqf1olem1 14092 seqf1olem2 14093 seqz 14101 expm1t 14141 expubnd 14227 bcm1k 14364 bcn2 14368 hashfzo 14478 hashbclem 14501 hashf1 14506 seqcoll 14513 swrdfv2 14709 swrdspsleq 14713 swrdlsw 14715 addlenrevpfx 14738 ccatpfx 14749 cshwlen 14847 cshwidxmodr 14852 cshwidxm 14856 swrd2lsw 15001 shftlem 15117 shftfval 15119 seqshft 15134 iserex 15705 serf0 15729 iseralt 15733 sumrblem 15759 fsumm1 15799 mptfzshft 15826 binomlem 15877 binom1dif 15881 isumsplit 15888 climcndslem1 15897 binomrisefac 16090 bpolycl 16100 bpolysum 16101 bpolydiflem 16102 bpoly2 16105 bpoly3 16106 fsumcube 16108 ruclem12 16289 dvdssub2 16349 4sqlem19 17010 vdwapun 17021 vdwapid1 17022 vdwlem5 17032 vdwlem8 17035 vdwnnlem2 17043 ramub1lem2 17074 1259lem4 17181 1259prm 17183 2503prm 17187 4001prm 17192 gsumsgrpccat 18875 sylow1lem1 19640 efgsres 19780 efgredleme 19785 gsummptshft 19978 ablsimpgfindlem1 20151 icccvx 25000 reparphti 25048 reparphtiOLD 25049 ovolunlem1 25551 advlog 26714 cxpaddlelem 26812 ang180lem1 26870 ang180lem3 26872 asinlem2 26930 tanatan 26980 ppiub 27266 perfect1 27290 lgsquad2lem1 27446 rplogsumlem1 27546 selberg2lem 27612 logdivbnd 27618 pntrsumo1 27627 pntrsumbnd2 27629 ax5seglem3 28964 ax5seglem5 28966 axbtwnid 28972 axlowdimlem16 28990 axeuclidlem 28995 axcontlem2 28998 crctcshwlkn0lem6 29848 clwwlknonex2lem2 30140 clwwlknonex2 30141 eucrctshift 30275 cvmliftlem7 35259 nndivsub 36423 ltflcei 37568 itg2addnclem3 37633 mettrifi 37717 irrapxlem1 42778 rmspecsqrtnq 42862 jm2.24nn 42916 jm2.18 42945 jm2.23 42953 jm2.27c 42964 monoord2xrv 45399 itgsinexp 45876 2elfz2melfz 47233 sbgoldbwt 47651 sgoldbeven3prm 47657 evengpop3 47672 evengpoap3 47673 zlmodzxzsub 48085 ackval42 48430 |
Copyright terms: Public domain | W3C validator |