Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11229 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | simpr 485 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcomd 11186 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
4 | pncan3 11238 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
5 | 4 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
6 | 3, 5 | eqtrd 2779 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 + caddc 10883 − cmin 11214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-sub 11216 |
This theorem is referenced by: addsubass 11240 npncan 11251 nppcan 11252 nnpcan 11253 subcan2 11255 nnncan 11265 npcand 11345 nn1suc 12004 zlem1lt 12381 zltlem1 12382 peano5uzi 12418 nummac 12491 uzp1 12628 peano2uzr 12652 qbtwnre 12942 fz01en 13293 fzsuc2 13323 fseq1m1p1 13340 predfz 13390 fzoss2 13424 fzoaddel2 13452 fzosplitsnm1 13471 fldiv 13589 modfzo0difsn 13672 seqm1 13749 monoord2 13763 sermono 13764 seqf1olem1 13771 seqf1olem2 13772 seqz 13780 expm1t 13820 expubnd 13904 bcm1k 14038 bcn2 14042 hashfzo 14153 hashbclem 14173 hashf1 14180 seqcoll 14187 swrdfv2 14383 swrdspsleq 14387 swrdlsw 14389 addlenrevpfx 14412 ccatpfx 14423 cshwlen 14521 cshwidxmodr 14526 cshwidxm 14530 swrd2lsw 14674 shftlem 14788 shftfval 14790 seqshft 14805 iserex 15377 serf0 15401 iseralt 15405 sumrblem 15432 fsumm1 15472 mptfzshft 15499 binomlem 15550 binom1dif 15554 isumsplit 15561 climcndslem1 15570 binomrisefac 15761 bpolycl 15771 bpolysum 15772 bpolydiflem 15773 bpoly2 15776 bpoly3 15777 fsumcube 15779 ruclem12 15959 dvdssub2 16019 4sqlem19 16673 vdwapun 16684 vdwapid1 16685 vdwlem5 16695 vdwlem8 16698 vdwnnlem2 16706 ramub1lem2 16737 1259lem4 16844 1259prm 16846 2503prm 16850 4001prm 16855 gsumsgrpccat 18487 gsumccatOLD 18488 sylow1lem1 19212 efgsres 19353 efgredleme 19358 gsummptshft 19546 ablsimpgfindlem1 19719 icccvx 24122 reparphti 24169 ovolunlem1 24670 advlog 25818 cxpaddlelem 25913 ang180lem1 25968 ang180lem3 25970 asinlem2 26028 tanatan 26078 ppiub 26361 perfect1 26385 lgsquad2lem1 26541 rplogsumlem1 26641 selberg2lem 26707 logdivbnd 26713 pntrsumo1 26722 pntrsumbnd2 26724 ax5seglem3 27308 ax5seglem5 27310 axbtwnid 27316 axlowdimlem16 27334 axeuclidlem 27339 axcontlem2 27342 crctcshwlkn0lem6 28189 clwwlknonex2lem2 28481 clwwlknonex2 28482 eucrctshift 28616 cvmliftlem7 33262 nndivsub 34655 ltflcei 35774 itg2addnclem3 35839 mettrifi 35924 irrapxlem1 40651 rmspecsqrtnq 40735 jm2.24nn 40788 jm2.18 40817 jm2.23 40825 jm2.27c 40836 monoord2xrv 43031 itgsinexp 43503 2elfz2melfz 44821 sbgoldbwt 45240 sgoldbeven3prm 45246 evengpop3 45261 evengpoap3 45262 zlmodzxzsub 45707 ackval42 46053 |
Copyright terms: Public domain | W3C validator |