Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 10936 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | simpr 488 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcomd 10893 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
4 | pncan3 10945 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
5 | 4 | ancoms 462 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
6 | 3, 5 | eqtrd 2793 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 (class class class)co 7156 ℂcc 10586 + caddc 10591 − cmin 10921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-ltxr 10731 df-sub 10923 |
This theorem is referenced by: addsubass 10947 npncan 10958 nppcan 10959 nnpcan 10960 subcan2 10962 nnncan 10972 npcand 11052 nn1suc 11709 zlem1lt 12086 zltlem1 12087 peano5uzi 12123 nummac 12195 uzp1 12332 peano2uzr 12356 qbtwnre 12646 fz01en 12997 fzsuc2 13027 fseq1m1p1 13044 predfz 13094 fzoss2 13127 fzoaddel2 13155 fzosplitsnm1 13174 fldiv 13290 modfzo0difsn 13373 seqm1 13450 monoord2 13464 sermono 13465 seqf1olem1 13472 seqf1olem2 13473 seqz 13481 expm1t 13520 expubnd 13604 bcm1k 13738 bcn2 13742 hashfzo 13853 hashbclem 13873 hashf1 13880 seqcoll 13887 swrdfv2 14083 swrdspsleq 14087 swrdlsw 14089 addlenrevpfx 14112 ccatpfx 14123 cshwlen 14221 cshwidxmodr 14226 cshwidxm 14230 swrd2lsw 14374 shftlem 14488 shftfval 14490 seqshft 14505 iserex 15074 serf0 15098 iseralt 15102 sumrblem 15129 fsumm1 15167 mptfzshft 15194 binomlem 15245 binom1dif 15249 isumsplit 15256 climcndslem1 15265 binomrisefac 15457 bpolycl 15467 bpolysum 15468 bpolydiflem 15469 bpoly2 15472 bpoly3 15473 fsumcube 15475 ruclem12 15655 dvdssub2 15715 4sqlem19 16368 vdwapun 16379 vdwapid1 16380 vdwlem5 16390 vdwlem8 16393 vdwnnlem2 16401 ramub1lem2 16432 1259lem4 16539 1259prm 16541 2503prm 16545 4001prm 16550 gsumsgrpccat 18084 gsumccatOLD 18085 sylow1lem1 18804 efgsres 18945 efgredleme 18950 gsummptshft 19138 ablsimpgfindlem1 19311 icccvx 23665 reparphti 23712 ovolunlem1 24211 advlog 25358 cxpaddlelem 25453 ang180lem1 25508 ang180lem3 25510 asinlem2 25568 tanatan 25618 ppiub 25901 perfect1 25925 lgsquad2lem1 26081 rplogsumlem1 26181 selberg2lem 26247 logdivbnd 26253 pntrsumo1 26262 pntrsumbnd2 26264 ax5seglem3 26838 ax5seglem5 26840 axbtwnid 26846 axlowdimlem16 26864 axeuclidlem 26869 axcontlem2 26872 crctcshwlkn0lem6 27714 clwwlknonex2lem2 28006 clwwlknonex2 28007 eucrctshift 28141 cvmliftlem7 32782 nndivsub 34230 ltflcei 35360 itg2addnclem3 35425 mettrifi 35510 irrapxlem1 40181 rmspecsqrtnq 40265 jm2.24nn 40318 jm2.18 40347 jm2.23 40355 jm2.27c 40366 monoord2xrv 42534 itgsinexp 43008 2elfz2melfz 44302 sbgoldbwt 44721 sgoldbeven3prm 44727 evengpop3 44742 evengpoap3 44743 zlmodzxzsub 45188 ackval42 45534 |
Copyright terms: Public domain | W3C validator |