| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 11380 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11336 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
| 4 | pncan3 11389 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
| 5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
| 6 | 3, 5 | eqtrd 2764 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 − cmin 11365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 |
| This theorem is referenced by: addsubass 11391 npncan 11403 nppcan 11404 nnpcan 11405 subcan2 11407 nnncan 11417 npcand 11497 nn1suc 12168 zlem1lt 12545 zltlem1 12546 peano5uzi 12583 nummac 12654 uzp1 12794 peano2uzr 12822 qbtwnre 13119 fz01en 13473 fzsuc2 13503 fseq1m1p1 13520 predfz 13574 fzoss2 13608 fzoaddel2 13641 fzosplitsnm1 13661 fldiv 13782 modfzo0difsn 13868 seqm1 13944 monoord2 13958 sermono 13959 seqf1olem1 13966 seqf1olem2 13967 seqz 13975 expm1t 14015 expubnd 14103 bcm1k 14240 bcn2 14244 hashfzo 14354 hashbclem 14377 hashf1 14382 seqcoll 14389 swrdfv2 14586 swrdspsleq 14590 swrdlsw 14592 ccatpfx 14625 cshwlen 14723 cshwidxmodr 14728 cshwidxm 14732 swrd2lsw 14877 shftlem 14993 shftfval 14995 seqshft 15010 iserex 15582 serf0 15606 iseralt 15610 sumrblem 15636 fsumm1 15676 mptfzshft 15703 binomlem 15754 binom1dif 15758 isumsplit 15765 climcndslem1 15774 binomrisefac 15967 bpolycl 15977 bpolysum 15978 bpolydiflem 15979 bpoly2 15982 bpoly3 15983 fsumcube 15985 ruclem12 16168 dvdssub2 16230 4sqlem19 16893 vdwapun 16904 vdwapid1 16905 vdwlem5 16915 vdwlem8 16918 vdwnnlem2 16926 ramub1lem2 16957 1259lem4 17063 1259prm 17065 2503prm 17069 4001prm 17074 gsumsgrpccat 18732 sylow1lem1 19495 efgsres 19635 efgredleme 19640 gsummptshft 19833 ablsimpgfindlem1 20006 icccvx 24864 reparphti 24912 reparphtiOLD 24913 ovolunlem1 25414 advlog 26579 cxpaddlelem 26677 ang180lem1 26735 ang180lem3 26737 asinlem2 26795 tanatan 26845 ppiub 27131 perfect1 27155 lgsquad2lem1 27311 rplogsumlem1 27411 selberg2lem 27477 logdivbnd 27483 pntrsumo1 27492 pntrsumbnd2 27494 ax5seglem3 28894 ax5seglem5 28896 axbtwnid 28902 axlowdimlem16 28920 axeuclidlem 28925 axcontlem2 28928 crctcshwlkn0lem6 29778 clwwlknonex2lem2 30070 clwwlknonex2 30071 eucrctshift 30205 cvmliftlem7 35263 nndivsub 36430 ltflcei 37587 itg2addnclem3 37652 mettrifi 37736 irrapxlem1 42795 rmspecsqrtnq 42879 jm2.24nn 42932 jm2.18 42961 jm2.23 42969 jm2.27c 42980 monoord2xrv 45463 itgsinexp 45937 2elfz2melfz 47303 sbgoldbwt 47762 sgoldbeven3prm 47768 evengpop3 47783 evengpoap3 47784 gpg5nbgrvtx13starlem2 48057 zlmodzxzsub 48345 ackval42 48682 |
| Copyright terms: Public domain | W3C validator |