| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 11366 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11322 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
| 4 | pncan3 11375 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
| 5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
| 6 | 3, 5 | eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 + caddc 11016 − cmin 11351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 |
| This theorem is referenced by: addsubass 11377 npncan 11389 nppcan 11390 nnpcan 11391 subcan2 11393 nnncan 11403 npcand 11483 nn1suc 12154 zlem1lt 12530 zltlem1 12531 peano5uzi 12568 nummac 12639 uzp1 12775 peano2uzr 12803 qbtwnre 13100 fz01en 13454 fzsuc2 13484 fseq1m1p1 13501 predfz 13555 fzoss2 13589 fzoaddel2 13622 fzosplitsnm1 13642 fldiv 13766 modfzo0difsn 13852 seqm1 13928 monoord2 13942 sermono 13943 seqf1olem1 13950 seqf1olem2 13951 seqz 13959 expm1t 13999 expubnd 14087 bcm1k 14224 bcn2 14228 hashfzo 14338 hashbclem 14361 hashf1 14366 seqcoll 14373 swrdfv2 14571 swrdspsleq 14575 swrdlsw 14577 ccatpfx 14610 cshwlen 14708 cshwidxmodr 14713 cshwidxm 14717 swrd2lsw 14861 shftlem 14977 shftfval 14979 seqshft 14994 iserex 15566 serf0 15590 iseralt 15594 sumrblem 15620 fsumm1 15660 mptfzshft 15687 binomlem 15738 binom1dif 15742 isumsplit 15749 climcndslem1 15758 binomrisefac 15951 bpolycl 15961 bpolysum 15962 bpolydiflem 15963 bpoly2 15966 bpoly3 15967 fsumcube 15969 ruclem12 16152 dvdssub2 16214 4sqlem19 16877 vdwapun 16888 vdwapid1 16889 vdwlem5 16899 vdwlem8 16902 vdwnnlem2 16910 ramub1lem2 16941 1259lem4 17047 1259prm 17049 2503prm 17053 4001prm 17058 gsumsgrpccat 18750 sylow1lem1 19512 efgsres 19652 efgredleme 19657 gsummptshft 19850 ablsimpgfindlem1 20023 icccvx 24876 reparphti 24924 reparphtiOLD 24925 ovolunlem1 25426 advlog 26591 cxpaddlelem 26689 ang180lem1 26747 ang180lem3 26749 asinlem2 26807 tanatan 26857 ppiub 27143 perfect1 27167 lgsquad2lem1 27323 rplogsumlem1 27423 selberg2lem 27489 logdivbnd 27495 pntrsumo1 27504 pntrsumbnd2 27506 ax5seglem3 28911 ax5seglem5 28913 axbtwnid 28919 axlowdimlem16 28937 axeuclidlem 28942 axcontlem2 28945 crctcshwlkn0lem6 29795 clwwlknonex2lem2 30090 clwwlknonex2 30091 eucrctshift 30225 cvmliftlem7 35356 nndivsub 36522 ltflcei 37669 itg2addnclem3 37734 mettrifi 37818 irrapxlem1 42940 rmspecsqrtnq 43024 jm2.24nn 43077 jm2.18 43106 jm2.23 43114 jm2.27c 43125 monoord2xrv 45606 itgsinexp 46078 2elfz2melfz 47443 sbgoldbwt 47902 sgoldbeven3prm 47908 evengpop3 47923 evengpoap3 47924 gpg5nbgrvtx13starlem2 48197 zlmodzxzsub 48485 ackval42 48822 |
| Copyright terms: Public domain | W3C validator |