![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11459 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | simpr 486 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcomd 11416 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
4 | pncan3 11468 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
5 | 4 | ancoms 460 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
6 | 3, 5 | eqtrd 2773 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7409 ℂcc 11108 + caddc 11113 − cmin 11444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 |
This theorem is referenced by: addsubass 11470 npncan 11481 nppcan 11482 nnpcan 11483 subcan2 11485 nnncan 11495 npcand 11575 nn1suc 12234 zlem1lt 12614 zltlem1 12615 peano5uzi 12651 nummac 12722 uzp1 12863 peano2uzr 12887 qbtwnre 13178 fz01en 13529 fzsuc2 13559 fseq1m1p1 13576 predfz 13626 fzoss2 13660 fzoaddel2 13688 fzosplitsnm1 13707 fldiv 13825 modfzo0difsn 13908 seqm1 13985 monoord2 13999 sermono 14000 seqf1olem1 14007 seqf1olem2 14008 seqz 14016 expm1t 14056 expubnd 14142 bcm1k 14275 bcn2 14279 hashfzo 14389 hashbclem 14411 hashf1 14418 seqcoll 14425 swrdfv2 14611 swrdspsleq 14615 swrdlsw 14617 addlenrevpfx 14640 ccatpfx 14651 cshwlen 14749 cshwidxmodr 14754 cshwidxm 14758 swrd2lsw 14903 shftlem 15015 shftfval 15017 seqshft 15032 iserex 15603 serf0 15627 iseralt 15631 sumrblem 15657 fsumm1 15697 mptfzshft 15724 binomlem 15775 binom1dif 15779 isumsplit 15786 climcndslem1 15795 binomrisefac 15986 bpolycl 15996 bpolysum 15997 bpolydiflem 15998 bpoly2 16001 bpoly3 16002 fsumcube 16004 ruclem12 16184 dvdssub2 16244 4sqlem19 16896 vdwapun 16907 vdwapid1 16908 vdwlem5 16918 vdwlem8 16921 vdwnnlem2 16929 ramub1lem2 16960 1259lem4 17067 1259prm 17069 2503prm 17073 4001prm 17078 gsumsgrpccat 18721 sylow1lem1 19466 efgsres 19606 efgredleme 19611 gsummptshft 19804 ablsimpgfindlem1 19977 icccvx 24466 reparphti 24513 ovolunlem1 25014 advlog 26162 cxpaddlelem 26259 ang180lem1 26314 ang180lem3 26316 asinlem2 26374 tanatan 26424 ppiub 26707 perfect1 26731 lgsquad2lem1 26887 rplogsumlem1 26987 selberg2lem 27053 logdivbnd 27059 pntrsumo1 27068 pntrsumbnd2 27070 ax5seglem3 28189 ax5seglem5 28191 axbtwnid 28197 axlowdimlem16 28215 axeuclidlem 28220 axcontlem2 28223 crctcshwlkn0lem6 29069 clwwlknonex2lem2 29361 clwwlknonex2 29362 eucrctshift 29496 cvmliftlem7 34282 gg-reparphti 35172 nndivsub 35342 ltflcei 36476 itg2addnclem3 36541 mettrifi 36625 irrapxlem1 41560 rmspecsqrtnq 41644 jm2.24nn 41698 jm2.18 41727 jm2.23 41735 jm2.27c 41746 monoord2xrv 44194 itgsinexp 44671 2elfz2melfz 46026 sbgoldbwt 46445 sgoldbeven3prm 46451 evengpop3 46466 evengpoap3 46467 zlmodzxzsub 47036 ackval42 47382 |
Copyright terms: Public domain | W3C validator |