| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 11359 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11315 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
| 4 | pncan3 11368 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
| 5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
| 6 | 3, 5 | eqtrd 2766 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 + caddc 11009 − cmin 11344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 |
| This theorem is referenced by: addsubass 11370 npncan 11382 nppcan 11383 nnpcan 11384 subcan2 11386 nnncan 11396 npcand 11476 nn1suc 12147 zlem1lt 12524 zltlem1 12525 peano5uzi 12562 nummac 12633 uzp1 12773 peano2uzr 12801 qbtwnre 13098 fz01en 13452 fzsuc2 13482 fseq1m1p1 13499 predfz 13553 fzoss2 13587 fzoaddel2 13620 fzosplitsnm1 13640 fldiv 13764 modfzo0difsn 13850 seqm1 13926 monoord2 13940 sermono 13941 seqf1olem1 13948 seqf1olem2 13949 seqz 13957 expm1t 13997 expubnd 14085 bcm1k 14222 bcn2 14226 hashfzo 14336 hashbclem 14359 hashf1 14364 seqcoll 14371 swrdfv2 14569 swrdspsleq 14573 swrdlsw 14575 ccatpfx 14608 cshwlen 14706 cshwidxmodr 14711 cshwidxm 14715 swrd2lsw 14859 shftlem 14975 shftfval 14977 seqshft 14992 iserex 15564 serf0 15588 iseralt 15592 sumrblem 15618 fsumm1 15658 mptfzshft 15685 binomlem 15736 binom1dif 15740 isumsplit 15747 climcndslem1 15756 binomrisefac 15949 bpolycl 15959 bpolysum 15960 bpolydiflem 15961 bpoly2 15964 bpoly3 15965 fsumcube 15967 ruclem12 16150 dvdssub2 16212 4sqlem19 16875 vdwapun 16886 vdwapid1 16887 vdwlem5 16897 vdwlem8 16900 vdwnnlem2 16908 ramub1lem2 16939 1259lem4 17045 1259prm 17047 2503prm 17051 4001prm 17056 gsumsgrpccat 18748 sylow1lem1 19511 efgsres 19651 efgredleme 19656 gsummptshft 19849 ablsimpgfindlem1 20022 icccvx 24876 reparphti 24924 reparphtiOLD 24925 ovolunlem1 25426 advlog 26591 cxpaddlelem 26689 ang180lem1 26747 ang180lem3 26749 asinlem2 26807 tanatan 26857 ppiub 27143 perfect1 27167 lgsquad2lem1 27323 rplogsumlem1 27423 selberg2lem 27489 logdivbnd 27495 pntrsumo1 27504 pntrsumbnd2 27506 ax5seglem3 28910 ax5seglem5 28912 axbtwnid 28918 axlowdimlem16 28936 axeuclidlem 28941 axcontlem2 28944 crctcshwlkn0lem6 29794 clwwlknonex2lem2 30086 clwwlknonex2 30087 eucrctshift 30221 cvmliftlem7 35333 nndivsub 36497 ltflcei 37654 itg2addnclem3 37719 mettrifi 37803 irrapxlem1 42861 rmspecsqrtnq 42945 jm2.24nn 42998 jm2.18 43027 jm2.23 43035 jm2.27c 43046 monoord2xrv 45527 itgsinexp 45999 2elfz2melfz 47355 sbgoldbwt 47814 sgoldbeven3prm 47820 evengpop3 47835 evengpoap3 47836 gpg5nbgrvtx13starlem2 48109 zlmodzxzsub 48397 ackval42 48734 |
| Copyright terms: Public domain | W3C validator |