![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11400 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | simpr 485 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcomd 11357 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
4 | pncan3 11409 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
5 | 4 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
6 | 3, 5 | eqtrd 2776 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 (class class class)co 7357 ℂcc 11049 + caddc 11054 − cmin 11385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-po 5545 df-so 5546 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-ltxr 11194 df-sub 11387 |
This theorem is referenced by: addsubass 11411 npncan 11422 nppcan 11423 nnpcan 11424 subcan2 11426 nnncan 11436 npcand 11516 nn1suc 12175 zlem1lt 12555 zltlem1 12556 peano5uzi 12592 nummac 12663 uzp1 12804 peano2uzr 12828 qbtwnre 13118 fz01en 13469 fzsuc2 13499 fseq1m1p1 13516 predfz 13566 fzoss2 13600 fzoaddel2 13628 fzosplitsnm1 13647 fldiv 13765 modfzo0difsn 13848 seqm1 13925 monoord2 13939 sermono 13940 seqf1olem1 13947 seqf1olem2 13948 seqz 13956 expm1t 13996 expubnd 14082 bcm1k 14215 bcn2 14219 hashfzo 14329 hashbclem 14349 hashf1 14356 seqcoll 14363 swrdfv2 14549 swrdspsleq 14553 swrdlsw 14555 addlenrevpfx 14578 ccatpfx 14589 cshwlen 14687 cshwidxmodr 14692 cshwidxm 14696 swrd2lsw 14841 shftlem 14953 shftfval 14955 seqshft 14970 iserex 15541 serf0 15565 iseralt 15569 sumrblem 15596 fsumm1 15636 mptfzshft 15663 binomlem 15714 binom1dif 15718 isumsplit 15725 climcndslem1 15734 binomrisefac 15925 bpolycl 15935 bpolysum 15936 bpolydiflem 15937 bpoly2 15940 bpoly3 15941 fsumcube 15943 ruclem12 16123 dvdssub2 16183 4sqlem19 16835 vdwapun 16846 vdwapid1 16847 vdwlem5 16857 vdwlem8 16860 vdwnnlem2 16868 ramub1lem2 16899 1259lem4 17006 1259prm 17008 2503prm 17012 4001prm 17017 gsumsgrpccat 18650 sylow1lem1 19380 efgsres 19520 efgredleme 19525 gsummptshft 19713 ablsimpgfindlem1 19886 icccvx 24313 reparphti 24360 ovolunlem1 24861 advlog 26009 cxpaddlelem 26104 ang180lem1 26159 ang180lem3 26161 asinlem2 26219 tanatan 26269 ppiub 26552 perfect1 26576 lgsquad2lem1 26732 rplogsumlem1 26832 selberg2lem 26898 logdivbnd 26904 pntrsumo1 26913 pntrsumbnd2 26915 ax5seglem3 27880 ax5seglem5 27882 axbtwnid 27888 axlowdimlem16 27906 axeuclidlem 27911 axcontlem2 27914 crctcshwlkn0lem6 28760 clwwlknonex2lem2 29052 clwwlknonex2 29053 eucrctshift 29187 cvmliftlem7 33885 nndivsub 34929 ltflcei 36066 itg2addnclem3 36131 mettrifi 36216 irrapxlem1 41131 rmspecsqrtnq 41215 jm2.24nn 41269 jm2.18 41298 jm2.23 41306 jm2.27c 41317 monoord2xrv 43709 itgsinexp 44186 2elfz2melfz 45540 sbgoldbwt 45959 sgoldbeven3prm 45965 evengpop3 45980 evengpoap3 45981 zlmodzxzsub 46426 ackval42 46772 |
Copyright terms: Public domain | W3C validator |