Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > npcan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
npcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11150 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcomd 11107 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = (𝐵 + (𝐴 − 𝐵))) |
4 | pncan3 11159 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) | |
5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
6 | 3, 5 | eqtrd 2778 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 |
This theorem is referenced by: addsubass 11161 npncan 11172 nppcan 11173 nnpcan 11174 subcan2 11176 nnncan 11186 npcand 11266 nn1suc 11925 zlem1lt 12302 zltlem1 12303 peano5uzi 12339 nummac 12411 uzp1 12548 peano2uzr 12572 qbtwnre 12862 fz01en 13213 fzsuc2 13243 fseq1m1p1 13260 predfz 13310 fzoss2 13343 fzoaddel2 13371 fzosplitsnm1 13390 fldiv 13508 modfzo0difsn 13591 seqm1 13668 monoord2 13682 sermono 13683 seqf1olem1 13690 seqf1olem2 13691 seqz 13699 expm1t 13739 expubnd 13823 bcm1k 13957 bcn2 13961 hashfzo 14072 hashbclem 14092 hashf1 14099 seqcoll 14106 swrdfv2 14302 swrdspsleq 14306 swrdlsw 14308 addlenrevpfx 14331 ccatpfx 14342 cshwlen 14440 cshwidxmodr 14445 cshwidxm 14449 swrd2lsw 14593 shftlem 14707 shftfval 14709 seqshft 14724 iserex 15296 serf0 15320 iseralt 15324 sumrblem 15351 fsumm1 15391 mptfzshft 15418 binomlem 15469 binom1dif 15473 isumsplit 15480 climcndslem1 15489 binomrisefac 15680 bpolycl 15690 bpolysum 15691 bpolydiflem 15692 bpoly2 15695 bpoly3 15696 fsumcube 15698 ruclem12 15878 dvdssub2 15938 4sqlem19 16592 vdwapun 16603 vdwapid1 16604 vdwlem5 16614 vdwlem8 16617 vdwnnlem2 16625 ramub1lem2 16656 1259lem4 16763 1259prm 16765 2503prm 16769 4001prm 16774 gsumsgrpccat 18393 gsumccatOLD 18394 sylow1lem1 19118 efgsres 19259 efgredleme 19264 gsummptshft 19452 ablsimpgfindlem1 19625 icccvx 24019 reparphti 24066 ovolunlem1 24566 advlog 25714 cxpaddlelem 25809 ang180lem1 25864 ang180lem3 25866 asinlem2 25924 tanatan 25974 ppiub 26257 perfect1 26281 lgsquad2lem1 26437 rplogsumlem1 26537 selberg2lem 26603 logdivbnd 26609 pntrsumo1 26618 pntrsumbnd2 26620 ax5seglem3 27202 ax5seglem5 27204 axbtwnid 27210 axlowdimlem16 27228 axeuclidlem 27233 axcontlem2 27236 crctcshwlkn0lem6 28081 clwwlknonex2lem2 28373 clwwlknonex2 28374 eucrctshift 28508 cvmliftlem7 33153 nndivsub 34573 ltflcei 35692 itg2addnclem3 35757 mettrifi 35842 irrapxlem1 40560 rmspecsqrtnq 40644 jm2.24nn 40697 jm2.18 40726 jm2.23 40734 jm2.27c 40745 monoord2xrv 42914 itgsinexp 43386 2elfz2melfz 44698 sbgoldbwt 45117 sgoldbeven3prm 45123 evengpop3 45138 evengpoap3 45139 zlmodzxzsub 45584 ackval42 45930 |
Copyright terms: Public domain | W3C validator |