| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpvrinv | Structured version Visualization version GIF version | ||
| Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpvlinv.p | ⊢ + = (+g‘𝐺) |
| grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpvrinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) | |
| 2 | elmapi 8773 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 4 | 3 | ffvelcdmda 7017 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ 𝐵) |
| 5 | grpvlinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | grpvlinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 7 | grpvlinv.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 8 | grpvlinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 9 | 5, 6, 7, 8 | grprinv 18900 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑋‘𝑥) ∈ 𝐵) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
| 10 | 1, 4, 9 | syl2anc 584 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
| 11 | 10 | mpteq2dva 5184 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ 0 )) |
| 12 | elmapex 8772 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
| 13 | 12 | simprd 495 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 15 | fvexd 6837 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
| 16 | 3 | feqmptd 6890 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
| 17 | 5, 8 | grpinvf 18896 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 18 | fcompt 7066 | . . . 4 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
| 19 | 17, 2, 18 | syl2an 596 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
| 20 | 14, 4, 15, 16, 19 | offval2 7630 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))))) |
| 21 | fconstmpt 5678 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
| 22 | 21 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 )) |
| 23 | 11, 20, 22 | 3eqtr4d 2776 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 ↦ cmpt 5172 × cxp 5614 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ↑m cmap 8750 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Grpcgrp 18843 invgcminusg 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-1st 7921 df-2nd 7922 df-map 8752 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |