Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpvrinv | Structured version Visualization version GIF version |
Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpvlinv.p | ⊢ + = (+g‘𝐺) |
grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpvrinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) | |
2 | elmapi 8530 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
3 | 2 | adantl 485 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
4 | 3 | ffvelrnda 6904 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ 𝐵) |
5 | grpvlinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpvlinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
7 | grpvlinv.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | grpvlinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
9 | 5, 6, 7, 8 | grprinv 18417 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑋‘𝑥) ∈ 𝐵) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
10 | 1, 4, 9 | syl2anc 587 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
11 | 10 | mpteq2dva 5150 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ 0 )) |
12 | elmapex 8529 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
13 | 12 | simprd 499 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
14 | 13 | adantl 485 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
15 | fvexd 6732 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
16 | 3 | feqmptd 6780 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
17 | 5, 8 | grpinvf 18414 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
18 | fcompt 6948 | . . . 4 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
19 | 17, 2, 18 | syl2an 599 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
20 | 14, 4, 15, 16, 19 | offval2 7488 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))))) |
21 | fconstmpt 5611 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
22 | 21 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 )) |
23 | 11, 20, 22 | 3eqtr4d 2787 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 {csn 4541 ↦ cmpt 5135 × cxp 5549 ∘ ccom 5555 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ∘f cof 7467 ↑m cmap 8508 Basecbs 16760 +gcplusg 16802 0gc0g 16944 Grpcgrp 18365 invgcminusg 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-1st 7761 df-2nd 7762 df-map 8510 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |