![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpvrinv | Structured version Visualization version GIF version |
Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpvlinv.p | ⊢ + = (+g‘𝐺) |
grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpvrinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 765 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) | |
2 | elmapi 8874 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
3 | 2 | adantl 480 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
4 | 3 | ffvelcdmda 7099 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ 𝐵) |
5 | grpvlinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpvlinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
7 | grpvlinv.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | grpvlinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
9 | 5, 6, 7, 8 | grprinv 18954 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑋‘𝑥) ∈ 𝐵) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
10 | 1, 4, 9 | syl2anc 582 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
11 | 10 | mpteq2dva 5252 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ 0 )) |
12 | elmapex 8873 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
13 | 12 | simprd 494 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
14 | 13 | adantl 480 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
15 | fvexd 6917 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
16 | 3 | feqmptd 6972 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
17 | 5, 8 | grpinvf 18950 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
18 | fcompt 7148 | . . . 4 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
19 | 17, 2, 18 | syl2an 594 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
20 | 14, 4, 15, 16, 19 | offval2 7711 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))))) |
21 | fconstmpt 5744 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
22 | 21 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 )) |
23 | 11, 20, 22 | 3eqtr4d 2778 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 {csn 4632 ↦ cmpt 5235 × cxp 5680 ∘ ccom 5686 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 ∘f cof 7689 ↑m cmap 8851 Basecbs 17187 +gcplusg 17240 0gc0g 17428 Grpcgrp 18897 invgcminusg 18898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-1st 7999 df-2nd 8000 df-map 8853 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |