MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpvrinv Structured version   Visualization version   GIF version

Theorem grpvrinv 22302
Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
grpvlinv.b 𝐵 = (Base‘𝐺)
grpvlinv.p + = (+g𝐺)
grpvlinv.n 𝑁 = (invg𝐺)
grpvlinv.z 0 = (0g𝐺)
Assertion
Ref Expression
grpvrinv ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝑁𝑋)) = (𝐼 × { 0 }))

Proof of Theorem grpvrinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐼) → 𝐺 ∈ Grp)
2 elmapi 8783 . . . . . 6 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
32adantl 481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
43ffvelcdmda 7022 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ 𝐵)
5 grpvlinv.b . . . . 5 𝐵 = (Base‘𝐺)
6 grpvlinv.p . . . . 5 + = (+g𝐺)
7 grpvlinv.z . . . . 5 0 = (0g𝐺)
8 grpvlinv.n . . . . 5 𝑁 = (invg𝐺)
95, 6, 7, 8grprinv 18887 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝑥) ∈ 𝐵) → ((𝑋𝑥) + (𝑁‘(𝑋𝑥))) = 0 )
101, 4, 9syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐼) → ((𝑋𝑥) + (𝑁‘(𝑋𝑥))) = 0 )
1110mpteq2dva 5188 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑥𝐼 ↦ ((𝑋𝑥) + (𝑁‘(𝑋𝑥)))) = (𝑥𝐼0 ))
12 elmapex 8782 . . . . 5 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
1312simprd 495 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
1413adantl 481 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
15 fvexd 6841 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐼) → (𝑁‘(𝑋𝑥)) ∈ V)
163feqmptd 6895 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
175, 8grpinvf 18883 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
18 fcompt 7071 . . . 4 ((𝑁:𝐵𝐵𝑋:𝐼𝐵) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
1917, 2, 18syl2an 596 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
2014, 4, 15, 16, 19offval2 7637 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝑁𝑋)) = (𝑥𝐼 ↦ ((𝑋𝑥) + (𝑁‘(𝑋𝑥)))))
21 fconstmpt 5685 . . 3 (𝐼 × { 0 }) = (𝑥𝐼0 )
2221a1i 11 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝐼 × { 0 }) = (𝑥𝐼0 ))
2311, 20, 223eqtr4d 2774 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝑁𝑋)) = (𝐼 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cmpt 5176   × cxp 5621  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830  invgcminusg 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-1st 7931  df-2nd 7932  df-map 8762  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator