MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpvrinv Structured version   Visualization version   GIF version

Theorem grpvrinv 22318
Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
grpvlinv.b 𝐵 = (Base‘𝐺)
grpvlinv.p + = (+g𝐺)
grpvlinv.n 𝑁 = (invg𝐺)
grpvlinv.z 0 = (0g𝐺)
Assertion
Ref Expression
grpvrinv ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝑁𝑋)) = (𝐼 × { 0 }))

Proof of Theorem grpvrinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐼) → 𝐺 ∈ Grp)
2 elmapi 8874 . . . . . 6 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
32adantl 480 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
43ffvelcdmda 7099 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ 𝐵)
5 grpvlinv.b . . . . 5 𝐵 = (Base‘𝐺)
6 grpvlinv.p . . . . 5 + = (+g𝐺)
7 grpvlinv.z . . . . 5 0 = (0g𝐺)
8 grpvlinv.n . . . . 5 𝑁 = (invg𝐺)
95, 6, 7, 8grprinv 18954 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝑥) ∈ 𝐵) → ((𝑋𝑥) + (𝑁‘(𝑋𝑥))) = 0 )
101, 4, 9syl2anc 582 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐼) → ((𝑋𝑥) + (𝑁‘(𝑋𝑥))) = 0 )
1110mpteq2dva 5252 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑥𝐼 ↦ ((𝑋𝑥) + (𝑁‘(𝑋𝑥)))) = (𝑥𝐼0 ))
12 elmapex 8873 . . . . 5 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
1312simprd 494 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
1413adantl 480 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
15 fvexd 6917 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐼) → (𝑁‘(𝑋𝑥)) ∈ V)
163feqmptd 6972 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
175, 8grpinvf 18950 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
18 fcompt 7148 . . . 4 ((𝑁:𝐵𝐵𝑋:𝐼𝐵) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
1917, 2, 18syl2an 594 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
2014, 4, 15, 16, 19offval2 7711 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝑁𝑋)) = (𝑥𝐼 ↦ ((𝑋𝑥) + (𝑁‘(𝑋𝑥)))))
21 fconstmpt 5744 . . 3 (𝐼 × { 0 }) = (𝑥𝐼0 )
2221a1i 11 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝐼 × { 0 }) = (𝑥𝐼0 ))
2311, 20, 223eqtr4d 2778 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝑁𝑋)) = (𝐼 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  {csn 4632  cmpt 5235   × cxp 5680  ccom 5686  wf 6549  cfv 6553  (class class class)co 7426  f cof 7689  m cmap 8851  Basecbs 17187  +gcplusg 17240  0gc0g 17428  Grpcgrp 18897  invgcminusg 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-1st 7999  df-2nd 8000  df-map 8853  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator