Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpvrinv | Structured version Visualization version GIF version |
Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpvlinv.p | ⊢ + = (+g‘𝐺) |
grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpvrinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) | |
2 | elmapi 8637 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
4 | 3 | ffvelrnda 6961 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ 𝐵) |
5 | grpvlinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
6 | grpvlinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
7 | grpvlinv.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
8 | grpvlinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
9 | 5, 6, 7, 8 | grprinv 18629 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑋‘𝑥) ∈ 𝐵) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
10 | 1, 4, 9 | syl2anc 584 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))) = 0 ) |
11 | 10 | mpteq2dva 5174 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ 0 )) |
12 | elmapex 8636 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
13 | 12 | simprd 496 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
14 | 13 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
15 | fvexd 6789 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐼) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
16 | 3 | feqmptd 6837 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
17 | 5, 8 | grpinvf 18626 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
18 | fcompt 7005 | . . . 4 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
19 | 17, 2, 18 | syl2an 596 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
20 | 14, 4, 15, 16, 19 | offval2 7553 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝑥 ∈ 𝐼 ↦ ((𝑋‘𝑥) + (𝑁‘(𝑋‘𝑥))))) |
21 | fconstmpt 5649 | . . 3 ⊢ (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 ) | |
22 | 21 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝐼 × { 0 }) = (𝑥 ∈ 𝐼 ↦ 0 )) |
23 | 11, 20, 22 | 3eqtr4d 2788 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ↦ cmpt 5157 × cxp 5587 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 ↑m cmap 8615 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 invgcminusg 18578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-1st 7831 df-2nd 7832 df-map 8617 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |