HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopleid Structured version   Visualization version   GIF version

Theorem nmopleid 32119
Description: A nonzero, bounded Hermitian operator divided by its norm is less than or equal to the identity operator. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopleid ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ((1 / (normop𝑇)) ·op 𝑇) ≤op Iop )

Proof of Theorem nmopleid
StepHypRef Expression
1 hmoplin 31922 . . . . 5 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
2 nmlnopne0 31979 . . . . . 6 (𝑇 ∈ LinOp → ((normop𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop ))
32biimpar 477 . . . . 5 ((𝑇 ∈ LinOp ∧ 𝑇 ≠ 0hop ) → (normop𝑇) ≠ 0)
41, 3sylan 580 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝑇 ≠ 0hop ) → (normop𝑇) ≠ 0)
54adantlr 715 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑇 ≠ 0hop ) → (normop𝑇) ≠ 0)
6 rereccl 11839 . . . . . 6 (((normop𝑇) ∈ ℝ ∧ (normop𝑇) ≠ 0) → (1 / (normop𝑇)) ∈ ℝ)
76adantll 714 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → (1 / (normop𝑇)) ∈ ℝ)
8 simpll 766 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 𝑇 ∈ HrmOp)
9 idhmop 31962 . . . . . . 7 Iop ∈ HrmOp
10 hmopm 32001 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
119, 10mpan2 691 . . . . . 6 ((normop𝑇) ∈ ℝ → ((normop𝑇) ·op Iop ) ∈ HrmOp)
1211ad2antlr 727 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
13 simplr 768 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → (normop𝑇) ∈ ℝ)
14 hmopf 31854 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
15 nmopgt0 31892 . . . . . . . . . 10 (𝑇: ℋ⟶ ℋ → ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇)))
1615biimpa 476 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
1714, 16sylan 580 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
1817adantlr 715 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
1913, 18recgt0d 12056 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 0 < (1 / (normop𝑇)))
20 0re 11114 . . . . . . . 8 0 ∈ ℝ
21 ltle 11201 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / (normop𝑇)) ∈ ℝ) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
2220, 6, 21sylancr 587 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ (normop𝑇) ≠ 0) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
2322adantll 714 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
2419, 23mpd 15 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 0 ≤ (1 / (normop𝑇)))
25 leopnmid 32118 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))
2625adantr 480 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 𝑇op ((normop𝑇) ·op Iop ))
27 leopmul2i 32115 . . . . 5 ((((1 / (normop𝑇)) ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ ((normop𝑇) ·op Iop ) ∈ HrmOp) ∧ (0 ≤ (1 / (normop𝑇)) ∧ 𝑇op ((normop𝑇) ·op Iop ))) → ((1 / (normop𝑇)) ·op 𝑇) ≤op ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
287, 8, 12, 24, 26, 27syl32anc 1380 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op 𝑇) ≤op ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
29 recn 11096 . . . . . 6 ((normop𝑇) ∈ ℝ → (normop𝑇) ∈ ℂ)
30 reccl 11783 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → (1 / (normop𝑇)) ∈ ℂ)
31 simpl 482 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → (normop𝑇) ∈ ℂ)
32 hoif 31734 . . . . . . . . . . 11 Iop : ℋ–1-1-onto→ ℋ
33 f1of 6763 . . . . . . . . . . 11 ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ)
3432, 33ax-mp 5 . . . . . . . . . 10 Iop : ℋ⟶ ℋ
35 homulass 31782 . . . . . . . . . 10 (((1 / (normop𝑇)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ) → (((1 / (normop𝑇)) · (normop𝑇)) ·op Iop ) = ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
3634, 35mp3an3 1452 . . . . . . . . 9 (((1 / (normop𝑇)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ) → (((1 / (normop𝑇)) · (normop𝑇)) ·op Iop ) = ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
3730, 31, 36syl2anc 584 . . . . . . . 8 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → (((1 / (normop𝑇)) · (normop𝑇)) ·op Iop ) = ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
38 recid2 11791 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) · (normop𝑇)) = 1)
3938oveq1d 7361 . . . . . . . 8 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → (((1 / (normop𝑇)) · (normop𝑇)) ·op Iop ) = (1 ·op Iop ))
4037, 39eqtr3d 2768 . . . . . . 7 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )) = (1 ·op Iop ))
41 homullid 31780 . . . . . . . 8 ( Iop : ℋ⟶ ℋ → (1 ·op Iop ) = Iop )
4234, 41ax-mp 5 . . . . . . 7 (1 ·op Iop ) = Iop
4340, 42eqtrdi 2782 . . . . . 6 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )) = Iop )
4429, 43sylan 580 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )) = Iop )
4544adantll 714 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )) = Iop )
4628, 45breqtrd 5115 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op 𝑇) ≤op Iop )
475, 46syldan 591 . 2 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑇 ≠ 0hop ) → ((1 / (normop𝑇)) ·op 𝑇) ≤op Iop )
48473impa 1109 1 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ((1 / (normop𝑇)) ·op 𝑇) ≤op Iop )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147   / cdiv 11774  chba 30899   ·op chot 30919   0hop ch0o 30923   Iop chio 30924  normopcnop 30925  LinOpclo 30927  HrmOpcho 30930  op cleo 30938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065  ax-hcompl 31182
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-cn 23142  df-cnp 23143  df-lm 23144  df-t1 23229  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cfil 25182  df-cau 25183  df-cmet 25184  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581  df-dip 30681  df-ssp 30702  df-lno 30724  df-nmoo 30725  df-0o 30727  df-ph 30793  df-cbn 30843  df-hnorm 30948  df-hba 30949  df-hvsub 30951  df-hlim 30952  df-hcau 30953  df-sh 31187  df-ch 31201  df-oc 31232  df-ch0 31233  df-shs 31288  df-pjh 31375  df-hosum 31710  df-homul 31711  df-hodif 31712  df-h0op 31728  df-iop 31729  df-nmop 31819  df-lnop 31821  df-bdop 31822  df-hmop 31824  df-leop 31832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator