| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmopleid | Structured version Visualization version GIF version | ||
| Description: A nonzero, bounded Hermitian operator divided by its norm is less than or equal to the identity operator. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmopleid | ⊢ ((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op Iop ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoplin 31844 | . . . . 5 ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | |
| 2 | nmlnopne0 31901 | . . . . . 6 ⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) | |
| 3 | 2 | biimpar 477 | . . . . 5 ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ≠ 0hop ) → (normop‘𝑇) ≠ 0) |
| 4 | 1, 3 | sylan 580 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑇 ≠ 0hop ) → (normop‘𝑇) ≠ 0) |
| 5 | 4 | adantlr 715 | . . 3 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ 𝑇 ≠ 0hop ) → (normop‘𝑇) ≠ 0) |
| 6 | rereccl 11876 | . . . . . 6 ⊢ (((normop‘𝑇) ∈ ℝ ∧ (normop‘𝑇) ≠ 0) → (1 / (normop‘𝑇)) ∈ ℝ) | |
| 7 | 6 | adantll 714 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → (1 / (normop‘𝑇)) ∈ ℝ) |
| 8 | simpll 766 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 𝑇 ∈ HrmOp) | |
| 9 | idhmop 31884 | . . . . . . 7 ⊢ Iop ∈ HrmOp | |
| 10 | hmopm 31923 | . . . . . . 7 ⊢ (((normop‘𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop‘𝑇) ·op Iop ) ∈ HrmOp) | |
| 11 | 9, 10 | mpan2 691 | . . . . . 6 ⊢ ((normop‘𝑇) ∈ ℝ → ((normop‘𝑇) ·op Iop ) ∈ HrmOp) |
| 12 | 11 | ad2antlr 727 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → ((normop‘𝑇) ·op Iop ) ∈ HrmOp) |
| 13 | simplr 768 | . . . . . . 7 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → (normop‘𝑇) ∈ ℝ) | |
| 14 | hmopf 31776 | . . . . . . . . 9 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
| 15 | nmopgt0 31814 | . . . . . . . . . 10 ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ≠ 0 ↔ 0 < (normop‘𝑇))) | |
| 16 | 15 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝑇: ℋ⟶ ℋ ∧ (normop‘𝑇) ≠ 0) → 0 < (normop‘𝑇)) |
| 17 | 14, 16 | sylan 580 | . . . . . . . 8 ⊢ ((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ≠ 0) → 0 < (normop‘𝑇)) |
| 18 | 17 | adantlr 715 | . . . . . . 7 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 0 < (normop‘𝑇)) |
| 19 | 13, 18 | recgt0d 12093 | . . . . . 6 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 0 < (1 / (normop‘𝑇))) |
| 20 | 0re 11152 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 21 | ltle 11238 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ (1 / (normop‘𝑇)) ∈ ℝ) → (0 < (1 / (normop‘𝑇)) → 0 ≤ (1 / (normop‘𝑇)))) | |
| 22 | 20, 6, 21 | sylancr 587 | . . . . . . 7 ⊢ (((normop‘𝑇) ∈ ℝ ∧ (normop‘𝑇) ≠ 0) → (0 < (1 / (normop‘𝑇)) → 0 ≤ (1 / (normop‘𝑇)))) |
| 23 | 22 | adantll 714 | . . . . . 6 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → (0 < (1 / (normop‘𝑇)) → 0 ≤ (1 / (normop‘𝑇)))) |
| 24 | 19, 23 | mpd 15 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 0 ≤ (1 / (normop‘𝑇))) |
| 25 | leopnmid 32040 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) → 𝑇 ≤op ((normop‘𝑇) ·op Iop )) | |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 𝑇 ≤op ((normop‘𝑇) ·op Iop )) |
| 27 | leopmul2i 32037 | . . . . 5 ⊢ ((((1 / (normop‘𝑇)) ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ ((normop‘𝑇) ·op Iop ) ∈ HrmOp) ∧ (0 ≤ (1 / (normop‘𝑇)) ∧ 𝑇 ≤op ((normop‘𝑇) ·op Iop ))) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) | |
| 28 | 7, 8, 12, 24, 26, 27 | syl32anc 1380 | . . . 4 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) |
| 29 | recn 11134 | . . . . . 6 ⊢ ((normop‘𝑇) ∈ ℝ → (normop‘𝑇) ∈ ℂ) | |
| 30 | reccl 11820 | . . . . . . . . 9 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → (1 / (normop‘𝑇)) ∈ ℂ) | |
| 31 | simpl 482 | . . . . . . . . 9 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → (normop‘𝑇) ∈ ℂ) | |
| 32 | hoif 31656 | . . . . . . . . . . 11 ⊢ Iop : ℋ–1-1-onto→ ℋ | |
| 33 | f1of 6782 | . . . . . . . . . . 11 ⊢ ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ Iop : ℋ⟶ ℋ |
| 35 | homulass 31704 | . . . . . . . . . 10 ⊢ (((1 / (normop‘𝑇)) ∈ ℂ ∧ (normop‘𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ) → (((1 / (normop‘𝑇)) · (normop‘𝑇)) ·op Iop ) = ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) | |
| 36 | 34, 35 | mp3an3 1452 | . . . . . . . . 9 ⊢ (((1 / (normop‘𝑇)) ∈ ℂ ∧ (normop‘𝑇) ∈ ℂ) → (((1 / (normop‘𝑇)) · (normop‘𝑇)) ·op Iop ) = ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) |
| 37 | 30, 31, 36 | syl2anc 584 | . . . . . . . 8 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → (((1 / (normop‘𝑇)) · (normop‘𝑇)) ·op Iop ) = ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) |
| 38 | recid2 11828 | . . . . . . . . 9 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) · (normop‘𝑇)) = 1) | |
| 39 | 38 | oveq1d 7384 | . . . . . . . 8 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → (((1 / (normop‘𝑇)) · (normop‘𝑇)) ·op Iop ) = (1 ·op Iop )) |
| 40 | 37, 39 | eqtr3d 2766 | . . . . . . 7 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop )) = (1 ·op Iop )) |
| 41 | homullid 31702 | . . . . . . . 8 ⊢ ( Iop : ℋ⟶ ℋ → (1 ·op Iop ) = Iop ) | |
| 42 | 34, 41 | ax-mp 5 | . . . . . . 7 ⊢ (1 ·op Iop ) = Iop |
| 43 | 40, 42 | eqtrdi 2780 | . . . . . 6 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop )) = Iop ) |
| 44 | 29, 43 | sylan 580 | . . . . 5 ⊢ (((normop‘𝑇) ∈ ℝ ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop )) = Iop ) |
| 45 | 44 | adantll 714 | . . . 4 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop )) = Iop ) |
| 46 | 28, 45 | breqtrd 5128 | . . 3 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op Iop ) |
| 47 | 5, 46 | syldan 591 | . 2 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ 𝑇 ≠ 0hop ) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op Iop ) |
| 48 | 47 | 3impa 1109 | 1 ⊢ ((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op Iop ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 · cmul 11049 < clt 11184 ≤ cle 11185 / cdiv 11811 ℋchba 30821 ·op chot 30841 0hop ch0o 30845 Iop chio 30846 normopcnop 30847 LinOpclo 30849 HrmOpcho 30852 ≤op cleo 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-hilex 30901 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvmulass 30909 ax-hvdistr1 30910 ax-hvdistr2 30911 ax-hvmul0 30912 ax-hfi 30981 ax-his1 30984 ax-his2 30985 ax-his3 30986 ax-his4 30987 ax-hcompl 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-cn 23090 df-cnp 23091 df-lm 23092 df-t1 23177 df-haus 23178 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-cfil 25131 df-cau 25132 df-cmet 25133 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 df-ims 30503 df-dip 30603 df-ssp 30624 df-lno 30646 df-nmoo 30647 df-0o 30649 df-ph 30715 df-cbn 30765 df-hnorm 30870 df-hba 30871 df-hvsub 30873 df-hlim 30874 df-hcau 30875 df-sh 31109 df-ch 31123 df-oc 31154 df-ch0 31155 df-shs 31210 df-pjh 31297 df-hosum 31632 df-homul 31633 df-hodif 31634 df-h0op 31650 df-iop 31651 df-nmop 31741 df-lnop 31743 df-bdop 31744 df-hmop 31746 df-leop 31754 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |