HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopleid Structured version   Visualization version   GIF version

Theorem nmopleid 30501
Description: A nonzero, bounded Hermitian operator divided by its norm is less than or equal to the identity operator. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopleid ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ((1 / (normop𝑇)) ·op 𝑇) ≤op Iop )

Proof of Theorem nmopleid
StepHypRef Expression
1 hmoplin 30304 . . . . 5 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
2 nmlnopne0 30361 . . . . . 6 (𝑇 ∈ LinOp → ((normop𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop ))
32biimpar 478 . . . . 5 ((𝑇 ∈ LinOp ∧ 𝑇 ≠ 0hop ) → (normop𝑇) ≠ 0)
41, 3sylan 580 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝑇 ≠ 0hop ) → (normop𝑇) ≠ 0)
54adantlr 712 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑇 ≠ 0hop ) → (normop𝑇) ≠ 0)
6 rereccl 11693 . . . . . 6 (((normop𝑇) ∈ ℝ ∧ (normop𝑇) ≠ 0) → (1 / (normop𝑇)) ∈ ℝ)
76adantll 711 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → (1 / (normop𝑇)) ∈ ℝ)
8 simpll 764 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 𝑇 ∈ HrmOp)
9 idhmop 30344 . . . . . . 7 Iop ∈ HrmOp
10 hmopm 30383 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
119, 10mpan2 688 . . . . . 6 ((normop𝑇) ∈ ℝ → ((normop𝑇) ·op Iop ) ∈ HrmOp)
1211ad2antlr 724 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
13 simplr 766 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → (normop𝑇) ∈ ℝ)
14 hmopf 30236 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
15 nmopgt0 30274 . . . . . . . . . 10 (𝑇: ℋ⟶ ℋ → ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇)))
1615biimpa 477 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
1714, 16sylan 580 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
1817adantlr 712 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
1913, 18recgt0d 11909 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 0 < (1 / (normop𝑇)))
20 0re 10977 . . . . . . . 8 0 ∈ ℝ
21 ltle 11063 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / (normop𝑇)) ∈ ℝ) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
2220, 6, 21sylancr 587 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ (normop𝑇) ≠ 0) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
2322adantll 711 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
2419, 23mpd 15 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 0 ≤ (1 / (normop𝑇)))
25 leopnmid 30500 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))
2625adantr 481 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → 𝑇op ((normop𝑇) ·op Iop ))
27 leopmul2i 30497 . . . . 5 ((((1 / (normop𝑇)) ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ ((normop𝑇) ·op Iop ) ∈ HrmOp) ∧ (0 ≤ (1 / (normop𝑇)) ∧ 𝑇op ((normop𝑇) ·op Iop ))) → ((1 / (normop𝑇)) ·op 𝑇) ≤op ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
287, 8, 12, 24, 26, 27syl32anc 1377 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op 𝑇) ≤op ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
29 recn 10961 . . . . . 6 ((normop𝑇) ∈ ℝ → (normop𝑇) ∈ ℂ)
30 reccl 11640 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → (1 / (normop𝑇)) ∈ ℂ)
31 simpl 483 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → (normop𝑇) ∈ ℂ)
32 hoif 30116 . . . . . . . . . . 11 Iop : ℋ–1-1-onto→ ℋ
33 f1of 6716 . . . . . . . . . . 11 ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ)
3432, 33ax-mp 5 . . . . . . . . . 10 Iop : ℋ⟶ ℋ
35 homulass 30164 . . . . . . . . . 10 (((1 / (normop𝑇)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ) → (((1 / (normop𝑇)) · (normop𝑇)) ·op Iop ) = ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
3634, 35mp3an3 1449 . . . . . . . . 9 (((1 / (normop𝑇)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ) → (((1 / (normop𝑇)) · (normop𝑇)) ·op Iop ) = ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
3730, 31, 36syl2anc 584 . . . . . . . 8 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → (((1 / (normop𝑇)) · (normop𝑇)) ·op Iop ) = ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )))
38 recid2 11648 . . . . . . . . 9 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) · (normop𝑇)) = 1)
3938oveq1d 7290 . . . . . . . 8 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → (((1 / (normop𝑇)) · (normop𝑇)) ·op Iop ) = (1 ·op Iop ))
4037, 39eqtr3d 2780 . . . . . . 7 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )) = (1 ·op Iop ))
41 homulid2 30162 . . . . . . . 8 ( Iop : ℋ⟶ ℋ → (1 ·op Iop ) = Iop )
4234, 41ax-mp 5 . . . . . . 7 (1 ·op Iop ) = Iop
4340, 42eqtrdi 2794 . . . . . 6 (((normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )) = Iop )
4429, 43sylan 580 . . . . 5 (((normop𝑇) ∈ ℝ ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )) = Iop )
4544adantll 711 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op ((normop𝑇) ·op Iop )) = Iop )
4628, 45breqtrd 5100 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ (normop𝑇) ≠ 0) → ((1 / (normop𝑇)) ·op 𝑇) ≤op Iop )
475, 46syldan 591 . 2 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑇 ≠ 0hop ) → ((1 / (normop𝑇)) ·op 𝑇) ≤op Iop )
48473impa 1109 1 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ((1 / (normop𝑇)) ·op 𝑇) ≤op Iop )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  chba 29281   ·op chot 29301   0hop ch0o 29305   Iop chio 29306  normopcnop 29307  LinOpclo 29309  HrmOpcho 29312  op cleo 29320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-t1 22465  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-lno 29106  df-nmoo 29107  df-0o 29109  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-shs 29670  df-pjh 29757  df-hosum 30092  df-homul 30093  df-hodif 30094  df-h0op 30110  df-iop 30111  df-nmop 30201  df-lnop 30203  df-bdop 30204  df-hmop 30206  df-leop 30214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator