![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopleid | Structured version Visualization version GIF version |
Description: A nonzero, bounded Hermitian operator divided by its norm is less than or equal to the identity operator. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopleid | ⊢ ((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op Iop ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmoplin 29402 | . . . . 5 ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | |
2 | nmlnopne0 29459 | . . . . . 6 ⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) | |
3 | 2 | biimpar 478 | . . . . 5 ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ≠ 0hop ) → (normop‘𝑇) ≠ 0) |
4 | 1, 3 | sylan 580 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑇 ≠ 0hop ) → (normop‘𝑇) ≠ 0) |
5 | 4 | adantlr 711 | . . 3 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ 𝑇 ≠ 0hop ) → (normop‘𝑇) ≠ 0) |
6 | rereccl 11208 | . . . . . 6 ⊢ (((normop‘𝑇) ∈ ℝ ∧ (normop‘𝑇) ≠ 0) → (1 / (normop‘𝑇)) ∈ ℝ) | |
7 | 6 | adantll 710 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → (1 / (normop‘𝑇)) ∈ ℝ) |
8 | simpll 763 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 𝑇 ∈ HrmOp) | |
9 | idhmop 29442 | . . . . . . 7 ⊢ Iop ∈ HrmOp | |
10 | hmopm 29481 | . . . . . . 7 ⊢ (((normop‘𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop‘𝑇) ·op Iop ) ∈ HrmOp) | |
11 | 9, 10 | mpan2 687 | . . . . . 6 ⊢ ((normop‘𝑇) ∈ ℝ → ((normop‘𝑇) ·op Iop ) ∈ HrmOp) |
12 | 11 | ad2antlr 723 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → ((normop‘𝑇) ·op Iop ) ∈ HrmOp) |
13 | simplr 765 | . . . . . . 7 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → (normop‘𝑇) ∈ ℝ) | |
14 | hmopf 29334 | . . . . . . . . 9 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
15 | nmopgt0 29372 | . . . . . . . . . 10 ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ≠ 0 ↔ 0 < (normop‘𝑇))) | |
16 | 15 | biimpa 477 | . . . . . . . . 9 ⊢ ((𝑇: ℋ⟶ ℋ ∧ (normop‘𝑇) ≠ 0) → 0 < (normop‘𝑇)) |
17 | 14, 16 | sylan 580 | . . . . . . . 8 ⊢ ((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ≠ 0) → 0 < (normop‘𝑇)) |
18 | 17 | adantlr 711 | . . . . . . 7 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 0 < (normop‘𝑇)) |
19 | 13, 18 | recgt0d 11424 | . . . . . 6 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 0 < (1 / (normop‘𝑇))) |
20 | 0re 10492 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
21 | ltle 10578 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ (1 / (normop‘𝑇)) ∈ ℝ) → (0 < (1 / (normop‘𝑇)) → 0 ≤ (1 / (normop‘𝑇)))) | |
22 | 20, 6, 21 | sylancr 587 | . . . . . . 7 ⊢ (((normop‘𝑇) ∈ ℝ ∧ (normop‘𝑇) ≠ 0) → (0 < (1 / (normop‘𝑇)) → 0 ≤ (1 / (normop‘𝑇)))) |
23 | 22 | adantll 710 | . . . . . 6 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → (0 < (1 / (normop‘𝑇)) → 0 ≤ (1 / (normop‘𝑇)))) |
24 | 19, 23 | mpd 15 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 0 ≤ (1 / (normop‘𝑇))) |
25 | leopnmid 29598 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) → 𝑇 ≤op ((normop‘𝑇) ·op Iop )) | |
26 | 25 | adantr 481 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → 𝑇 ≤op ((normop‘𝑇) ·op Iop )) |
27 | leopmul2i 29595 | . . . . 5 ⊢ ((((1 / (normop‘𝑇)) ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ ((normop‘𝑇) ·op Iop ) ∈ HrmOp) ∧ (0 ≤ (1 / (normop‘𝑇)) ∧ 𝑇 ≤op ((normop‘𝑇) ·op Iop ))) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) | |
28 | 7, 8, 12, 24, 26, 27 | syl32anc 1371 | . . . 4 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) |
29 | recn 10476 | . . . . . 6 ⊢ ((normop‘𝑇) ∈ ℝ → (normop‘𝑇) ∈ ℂ) | |
30 | reccl 11155 | . . . . . . . . 9 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → (1 / (normop‘𝑇)) ∈ ℂ) | |
31 | simpl 483 | . . . . . . . . 9 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → (normop‘𝑇) ∈ ℂ) | |
32 | hoif 29214 | . . . . . . . . . . 11 ⊢ Iop : ℋ–1-1-onto→ ℋ | |
33 | f1of 6486 | . . . . . . . . . . 11 ⊢ ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ) | |
34 | 32, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ Iop : ℋ⟶ ℋ |
35 | homulass 29262 | . . . . . . . . . 10 ⊢ (((1 / (normop‘𝑇)) ∈ ℂ ∧ (normop‘𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ) → (((1 / (normop‘𝑇)) · (normop‘𝑇)) ·op Iop ) = ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) | |
36 | 34, 35 | mp3an3 1442 | . . . . . . . . 9 ⊢ (((1 / (normop‘𝑇)) ∈ ℂ ∧ (normop‘𝑇) ∈ ℂ) → (((1 / (normop‘𝑇)) · (normop‘𝑇)) ·op Iop ) = ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) |
37 | 30, 31, 36 | syl2anc 584 | . . . . . . . 8 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → (((1 / (normop‘𝑇)) · (normop‘𝑇)) ·op Iop ) = ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop ))) |
38 | recid2 11163 | . . . . . . . . 9 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) · (normop‘𝑇)) = 1) | |
39 | 38 | oveq1d 7034 | . . . . . . . 8 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → (((1 / (normop‘𝑇)) · (normop‘𝑇)) ·op Iop ) = (1 ·op Iop )) |
40 | 37, 39 | eqtr3d 2832 | . . . . . . 7 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop )) = (1 ·op Iop )) |
41 | homulid2 29260 | . . . . . . . 8 ⊢ ( Iop : ℋ⟶ ℋ → (1 ·op Iop ) = Iop ) | |
42 | 34, 41 | ax-mp 5 | . . . . . . 7 ⊢ (1 ·op Iop ) = Iop |
43 | 40, 42 | syl6eq 2846 | . . . . . 6 ⊢ (((normop‘𝑇) ∈ ℂ ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop )) = Iop ) |
44 | 29, 43 | sylan 580 | . . . . 5 ⊢ (((normop‘𝑇) ∈ ℝ ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop )) = Iop ) |
45 | 44 | adantll 710 | . . . 4 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op ((normop‘𝑇) ·op Iop )) = Iop ) |
46 | 28, 45 | breqtrd 4990 | . . 3 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ (normop‘𝑇) ≠ 0) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op Iop ) |
47 | 5, 46 | syldan 591 | . 2 ⊢ (((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ) ∧ 𝑇 ≠ 0hop ) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op Iop ) |
48 | 47 | 3impa 1103 | 1 ⊢ ((𝑇 ∈ HrmOp ∧ (normop‘𝑇) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ((1 / (normop‘𝑇)) ·op 𝑇) ≤op Iop ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2080 ≠ wne 2983 class class class wbr 4964 ⟶wf 6224 –1-1-onto→wf1o 6227 ‘cfv 6228 (class class class)co 7019 ℂcc 10384 ℝcr 10385 0cc0 10386 1c1 10387 · cmul 10391 < clt 10524 ≤ cle 10525 / cdiv 11147 ℋchba 28379 ·op chot 28399 0hop ch0o 28403 Iop chio 28404 normopcnop 28405 LinOpclo 28407 HrmOpcho 28410 ≤op cleo 28418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-inf2 8953 ax-cc 9706 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 ax-pre-sup 10464 ax-addf 10465 ax-mulf 10466 ax-hilex 28459 ax-hfvadd 28460 ax-hvcom 28461 ax-hvass 28462 ax-hv0cl 28463 ax-hvaddid 28464 ax-hfvmul 28465 ax-hvmulid 28466 ax-hvmulass 28467 ax-hvdistr1 28468 ax-hvdistr2 28469 ax-hvmul0 28470 ax-hfi 28539 ax-his1 28542 ax-his2 28543 ax-his3 28544 ax-his4 28545 ax-hcompl 28662 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-iin 4830 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-se 5406 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-isom 6237 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-of 7270 df-om 7440 df-1st 7548 df-2nd 7549 df-supp 7685 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-2o 7957 df-oadd 7960 df-omul 7961 df-er 8142 df-map 8261 df-pm 8262 df-ixp 8314 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-fsupp 8683 df-fi 8724 df-sup 8755 df-inf 8756 df-oi 8823 df-card 9217 df-acn 9220 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-div 11148 df-nn 11489 df-2 11550 df-3 11551 df-4 11552 df-5 11553 df-6 11554 df-7 11555 df-8 11556 df-9 11557 df-n0 11748 df-z 11832 df-dec 11949 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ioo 12592 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-fl 13012 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-rlim 14680 df-sum 14877 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-starv 16409 df-sca 16410 df-vsca 16411 df-ip 16412 df-tset 16413 df-ple 16414 df-ds 16416 df-unif 16417 df-hom 16418 df-cco 16419 df-rest 16525 df-topn 16526 df-0g 16544 df-gsum 16545 df-topgen 16546 df-pt 16547 df-prds 16550 df-xrs 16604 df-qtop 16609 df-imas 16610 df-xps 16612 df-mre 16686 df-mrc 16687 df-acs 16689 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-mulg 17982 df-cntz 18188 df-cmn 18635 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-fbas 20224 df-fg 20225 df-cnfld 20228 df-top 21186 df-topon 21203 df-topsp 21225 df-bases 21238 df-cld 21311 df-ntr 21312 df-cls 21313 df-nei 21390 df-cn 21519 df-cnp 21520 df-lm 21521 df-t1 21606 df-haus 21607 df-tx 21854 df-hmeo 22047 df-fil 22138 df-fm 22230 df-flim 22231 df-flf 22232 df-xms 22613 df-ms 22614 df-tms 22615 df-cfil 23541 df-cau 23542 df-cmet 23543 df-grpo 27953 df-gid 27954 df-ginv 27955 df-gdiv 27956 df-ablo 28005 df-vc 28019 df-nv 28052 df-va 28055 df-ba 28056 df-sm 28057 df-0v 28058 df-vs 28059 df-nmcv 28060 df-ims 28061 df-dip 28161 df-ssp 28182 df-lno 28204 df-nmoo 28205 df-0o 28207 df-ph 28273 df-cbn 28323 df-hnorm 28428 df-hba 28429 df-hvsub 28431 df-hlim 28432 df-hcau 28433 df-sh 28667 df-ch 28681 df-oc 28712 df-ch0 28713 df-shs 28768 df-pjh 28855 df-hosum 29190 df-homul 29191 df-hodif 29192 df-h0op 29208 df-iop 29209 df-nmop 29299 df-lnop 29301 df-bdop 29302 df-hmop 29304 df-leop 29312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |