HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leop2 Structured version   Visualization version   GIF version

Theorem leop2 30483
Description: Ordering relation for operators. Definition of operator ordering in [Young] p. 141. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leop2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇op 𝑈 ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((𝑈𝑥) ·ih 𝑥)))
Distinct variable groups:   𝑥,𝑇   𝑥,𝑈

Proof of Theorem leop2
StepHypRef Expression
1 leop 30482 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇op 𝑈 ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
2 hmopf 30233 . . . . . . 7 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
3 hmopf 30233 . . . . . . 7 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
42, 3anim12i 613 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ))
5 hodval 30101 . . . . . . . . . 10 ((𝑈: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑈op 𝑇)‘𝑥) = ((𝑈𝑥) − (𝑇𝑥)))
653com12 1122 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑈op 𝑇)‘𝑥) = ((𝑈𝑥) − (𝑇𝑥)))
763expa 1117 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑈op 𝑇)‘𝑥) = ((𝑈𝑥) − (𝑇𝑥)))
87oveq1d 7292 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑈op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈𝑥) − (𝑇𝑥)) ·ih 𝑥))
9 ffvelrn 6961 . . . . . . . . 9 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
109adantll 711 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
11 ffvelrn 6961 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
1211adantlr 712 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
13 simpr 485 . . . . . . . 8 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
14 his2sub 29451 . . . . . . . 8 (((𝑈𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑈𝑥) − (𝑇𝑥)) ·ih 𝑥) = (((𝑈𝑥) ·ih 𝑥) − ((𝑇𝑥) ·ih 𝑥)))
1510, 12, 13, 14syl3anc 1370 . . . . . . 7 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑈𝑥) − (𝑇𝑥)) ·ih 𝑥) = (((𝑈𝑥) ·ih 𝑥) − ((𝑇𝑥) ·ih 𝑥)))
168, 15eqtrd 2778 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑈op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈𝑥) ·ih 𝑥) − ((𝑇𝑥) ·ih 𝑥)))
174, 16sylan 580 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (((𝑈op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈𝑥) ·ih 𝑥) − ((𝑇𝑥) ·ih 𝑥)))
1817breq2d 5088 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑈𝑥) ·ih 𝑥) − ((𝑇𝑥) ·ih 𝑥))))
19 hmopre 30282 . . . . . 6 ((𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑈𝑥) ·ih 𝑥) ∈ ℝ)
2019adantll 711 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((𝑈𝑥) ·ih 𝑥) ∈ ℝ)
21 hmopre 30282 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
2221adantlr 712 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
2320, 22subge0d 11563 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝑈𝑥) ·ih 𝑥) − ((𝑇𝑥) ·ih 𝑥)) ↔ ((𝑇𝑥) ·ih 𝑥) ≤ ((𝑈𝑥) ·ih 𝑥)))
2418, 23bitrd 278 . . 3 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥) ↔ ((𝑇𝑥) ·ih 𝑥) ≤ ((𝑈𝑥) ·ih 𝑥)))
2524ralbidva 3117 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((𝑈𝑥) ·ih 𝑥)))
261, 25bitrd 278 1 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇op 𝑈 ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((𝑈𝑥) ·ih 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5076  wf 6431  cfv 6435  (class class class)co 7277  cr 10868  0cc0 10869  cle 11008  cmin 11203  chba 29278   ·ih csp 29281   cmv 29284  op chod 29299  HrmOpcho 29309  op cleo 29317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cc 10189  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947  ax-addf 10948  ax-mulf 10949  ax-hilex 29358  ax-hfvadd 29359  ax-hvcom 29360  ax-hvass 29361  ax-hv0cl 29362  ax-hvaddid 29363  ax-hfvmul 29364  ax-hvmulid 29365  ax-hvmulass 29366  ax-hvdistr1 29367  ax-hvdistr2 29368  ax-hvmul0 29369  ax-hfi 29438  ax-his1 29441  ax-his2 29442  ax-his3 29443  ax-his4 29444  ax-hcompl 29561
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7976  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-2o 8296  df-oadd 8299  df-omul 8300  df-er 8496  df-map 8615  df-pm 8616  df-ixp 8684  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-fsupp 9127  df-fi 9168  df-sup 9199  df-inf 9200  df-oi 9267  df-card 9695  df-acn 9698  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12436  df-uz 12581  df-q 12687  df-rp 12729  df-xneg 12846  df-xadd 12847  df-xmul 12848  df-ioo 13081  df-ico 13083  df-icc 13084  df-fz 13238  df-fzo 13381  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-cn 22376  df-cnp 22377  df-lm 22378  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cfil 24417  df-cau 24418  df-cmet 24419  df-grpo 28852  df-gid 28853  df-ginv 28854  df-gdiv 28855  df-ablo 28904  df-vc 28918  df-nv 28951  df-va 28954  df-ba 28955  df-sm 28956  df-0v 28957  df-vs 28958  df-nmcv 28959  df-ims 28960  df-dip 29060  df-ssp 29081  df-ph 29172  df-cbn 29222  df-hnorm 29327  df-hba 29328  df-hvsub 29330  df-hlim 29331  df-hcau 29332  df-sh 29566  df-ch 29580  df-oc 29611  df-ch0 29612  df-shs 29667  df-pjh 29754  df-hosum 30089  df-homul 30090  df-hodif 30091  df-h0op 30107  df-hmop 30203  df-leop 30211
This theorem is referenced by:  leop3  30484  idleop  30490  leoptri  30495  leoptr  30496  leopnmid  30497
  Copyright terms: Public domain W3C validator