![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > leopmul | Structured version Visualization version GIF version |
Description: The scalar product of a positive real and a positive operator is a positive operator. Exercise 1(ii) of [Retherford] p. 49. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leopmul | โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ ( 0hop โคop ๐ โ 0hop โคop (๐ด ยทop ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1145 | . . . 4 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ (๐ด โ โ โง ๐ โ HrmOp)) | |
2 | 1 | adantr 480 | . . 3 โข (((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โง 0hop โคop ๐) โ (๐ด โ โ โง ๐ โ HrmOp)) |
3 | 0re 11217 | . . . . . 6 โข 0 โ โ | |
4 | ltle 11303 | . . . . . . 7 โข ((0 โ โ โง ๐ด โ โ) โ (0 < ๐ด โ 0 โค ๐ด)) | |
5 | 4 | 3impia 1114 | . . . . . 6 โข ((0 โ โ โง ๐ด โ โ โง 0 < ๐ด) โ 0 โค ๐ด) |
6 | 3, 5 | mp3an1 1444 | . . . . 5 โข ((๐ด โ โ โง 0 < ๐ด) โ 0 โค ๐ด) |
7 | 6 | 3adant2 1128 | . . . 4 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ 0 โค ๐ด) |
8 | 7 | anim1i 614 | . . 3 โข (((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โง 0hop โคop ๐) โ (0 โค ๐ด โง 0hop โคop ๐)) |
9 | leopmuli 31890 | . . 3 โข (((๐ด โ โ โง ๐ โ HrmOp) โง (0 โค ๐ด โง 0hop โคop ๐)) โ 0hop โคop (๐ด ยทop ๐)) | |
10 | 2, 8, 9 | syl2anc 583 | . 2 โข (((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โง 0hop โคop ๐) โ 0hop โคop (๐ด ยทop ๐)) |
11 | gt0ne0 11680 | . . . . . . 7 โข ((๐ด โ โ โง 0 < ๐ด) โ ๐ด โ 0) | |
12 | rereccl 11933 | . . . . . . 7 โข ((๐ด โ โ โง ๐ด โ 0) โ (1 / ๐ด) โ โ) | |
13 | 11, 12 | syldan 590 | . . . . . 6 โข ((๐ด โ โ โง 0 < ๐ด) โ (1 / ๐ด) โ โ) |
14 | 13 | 3adant2 1128 | . . . . 5 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ (1 / ๐ด) โ โ) |
15 | hmopm 31778 | . . . . . 6 โข ((๐ด โ โ โง ๐ โ HrmOp) โ (๐ด ยทop ๐) โ HrmOp) | |
16 | 15 | 3adant3 1129 | . . . . 5 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ (๐ด ยทop ๐) โ HrmOp) |
17 | recgt0 12061 | . . . . . . 7 โข ((๐ด โ โ โง 0 < ๐ด) โ 0 < (1 / ๐ด)) | |
18 | ltle 11303 | . . . . . . . 8 โข ((0 โ โ โง (1 / ๐ด) โ โ) โ (0 < (1 / ๐ด) โ 0 โค (1 / ๐ด))) | |
19 | 3, 13, 18 | sylancr 586 | . . . . . . 7 โข ((๐ด โ โ โง 0 < ๐ด) โ (0 < (1 / ๐ด) โ 0 โค (1 / ๐ด))) |
20 | 17, 19 | mpd 15 | . . . . . 6 โข ((๐ด โ โ โง 0 < ๐ด) โ 0 โค (1 / ๐ด)) |
21 | 20 | 3adant2 1128 | . . . . 5 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ 0 โค (1 / ๐ด)) |
22 | 14, 16, 21 | jca31 514 | . . . 4 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ (((1 / ๐ด) โ โ โง (๐ด ยทop ๐) โ HrmOp) โง 0 โค (1 / ๐ด))) |
23 | leopmuli 31890 | . . . . 5 โข ((((1 / ๐ด) โ โ โง (๐ด ยทop ๐) โ HrmOp) โง (0 โค (1 / ๐ด) โง 0hop โคop (๐ด ยทop ๐))) โ 0hop โคop ((1 / ๐ด) ยทop (๐ด ยทop ๐))) | |
24 | 23 | anassrs 467 | . . . 4 โข (((((1 / ๐ด) โ โ โง (๐ด ยทop ๐) โ HrmOp) โง 0 โค (1 / ๐ด)) โง 0hop โคop (๐ด ยทop ๐)) โ 0hop โคop ((1 / ๐ด) ยทop (๐ด ยทop ๐))) |
25 | 22, 24 | sylan 579 | . . 3 โข (((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โง 0hop โคop (๐ด ยทop ๐)) โ 0hop โคop ((1 / ๐ด) ยทop (๐ด ยทop ๐))) |
26 | recn 11199 | . . . . . . . . 9 โข (๐ด โ โ โ ๐ด โ โ) | |
27 | 26 | adantr 480 | . . . . . . . 8 โข ((๐ด โ โ โง 0 < ๐ด) โ ๐ด โ โ) |
28 | 27, 11 | recid2d 11987 | . . . . . . 7 โข ((๐ด โ โ โง 0 < ๐ด) โ ((1 / ๐ด) ยท ๐ด) = 1) |
29 | 28 | oveq1d 7419 | . . . . . 6 โข ((๐ด โ โ โง 0 < ๐ด) โ (((1 / ๐ด) ยท ๐ด) ยทop ๐) = (1 ยทop ๐)) |
30 | 29 | 3adant2 1128 | . . . . 5 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ (((1 / ๐ด) ยท ๐ด) ยทop ๐) = (1 ยทop ๐)) |
31 | 27, 11 | reccld 11984 | . . . . . . 7 โข ((๐ด โ โ โง 0 < ๐ด) โ (1 / ๐ด) โ โ) |
32 | 31 | 3adant2 1128 | . . . . . 6 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ (1 / ๐ด) โ โ) |
33 | 26 | 3ad2ant1 1130 | . . . . . 6 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ ๐ด โ โ) |
34 | hmopf 31631 | . . . . . . 7 โข (๐ โ HrmOp โ ๐: โโถ โ) | |
35 | 34 | 3ad2ant2 1131 | . . . . . 6 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ ๐: โโถ โ) |
36 | homulass 31559 | . . . . . 6 โข (((1 / ๐ด) โ โ โง ๐ด โ โ โง ๐: โโถ โ) โ (((1 / ๐ด) ยท ๐ด) ยทop ๐) = ((1 / ๐ด) ยทop (๐ด ยทop ๐))) | |
37 | 32, 33, 35, 36 | syl3anc 1368 | . . . . 5 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ (((1 / ๐ด) ยท ๐ด) ยทop ๐) = ((1 / ๐ด) ยทop (๐ด ยทop ๐))) |
38 | homullid 31557 | . . . . . . 7 โข (๐: โโถ โ โ (1 ยทop ๐) = ๐) | |
39 | 34, 38 | syl 17 | . . . . . 6 โข (๐ โ HrmOp โ (1 ยทop ๐) = ๐) |
40 | 39 | 3ad2ant2 1131 | . . . . 5 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ (1 ยทop ๐) = ๐) |
41 | 30, 37, 40 | 3eqtr3d 2774 | . . . 4 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ ((1 / ๐ด) ยทop (๐ด ยทop ๐)) = ๐) |
42 | 41 | adantr 480 | . . 3 โข (((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โง 0hop โคop (๐ด ยทop ๐)) โ ((1 / ๐ด) ยทop (๐ด ยทop ๐)) = ๐) |
43 | 25, 42 | breqtrd 5167 | . 2 โข (((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โง 0hop โคop (๐ด ยทop ๐)) โ 0hop โคop ๐) |
44 | 10, 43 | impbida 798 | 1 โข ((๐ด โ โ โง ๐ โ HrmOp โง 0 < ๐ด) โ ( 0hop โคop ๐ โ 0hop โคop (๐ด ยทop ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 395 โง w3a 1084 = wceq 1533 โ wcel 2098 โ wne 2934 class class class wbr 5141 โถwf 6532 (class class class)co 7404 โcc 11107 โcr 11108 0cc0 11109 1c1 11110 ยท cmul 11114 < clt 11249 โค cle 11250 / cdiv 11872 โchba 30676 ยทop chot 30696 0hop ch0o 30700 HrmOpcho 30707 โคop cleo 30715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 ax-hilex 30756 ax-hfvadd 30757 ax-hvcom 30758 ax-hvass 30759 ax-hv0cl 30760 ax-hvaddid 30761 ax-hfvmul 30762 ax-hvmulid 30763 ax-hvmulass 30764 ax-hvdistr1 30765 ax-hvdistr2 30766 ax-hvmul0 30767 ax-hfi 30836 ax-his1 30839 ax-his2 30840 ax-his3 30841 ax-his4 30842 ax-hcompl 30959 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-omul 8469 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14030 df-hash 14293 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-clim 15435 df-rlim 15436 df-sum 15636 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-hom 17227 df-cco 17228 df-rest 17374 df-topn 17375 df-0g 17393 df-gsum 17394 df-topgen 17395 df-pt 17396 df-prds 17399 df-xrs 17454 df-qtop 17459 df-imas 17460 df-xps 17462 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-mulg 18993 df-cntz 19230 df-cmn 19699 df-psmet 21227 df-xmet 21228 df-met 21229 df-bl 21230 df-mopn 21231 df-fbas 21232 df-fg 21233 df-cnfld 21236 df-top 22746 df-topon 22763 df-topsp 22785 df-bases 22799 df-cld 22873 df-ntr 22874 df-cls 22875 df-nei 22952 df-cn 23081 df-cnp 23082 df-lm 23083 df-haus 23169 df-tx 23416 df-hmeo 23609 df-fil 23700 df-fm 23792 df-flim 23793 df-flf 23794 df-xms 24176 df-ms 24177 df-tms 24178 df-cfil 25133 df-cau 25134 df-cmet 25135 df-grpo 30250 df-gid 30251 df-ginv 30252 df-gdiv 30253 df-ablo 30302 df-vc 30316 df-nv 30349 df-va 30352 df-ba 30353 df-sm 30354 df-0v 30355 df-vs 30356 df-nmcv 30357 df-ims 30358 df-dip 30458 df-ssp 30479 df-ph 30570 df-cbn 30620 df-hnorm 30725 df-hba 30726 df-hvsub 30728 df-hlim 30729 df-hcau 30730 df-sh 30964 df-ch 30978 df-oc 31009 df-ch0 31010 df-shs 31065 df-pjh 31152 df-hosum 31487 df-homul 31488 df-hodif 31489 df-h0op 31505 df-hmop 31601 df-leop 31609 |
This theorem is referenced by: opsqrlem6 31902 |
Copyright terms: Public domain | W3C validator |