| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > leopmul | Structured version Visualization version GIF version | ||
| Description: The scalar product of a positive real and a positive operator is a positive operator. Exercise 1(ii) of [Retherford] p. 49. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| leopmul | ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op (𝐴 ·op 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp)) |
| 3 | 0re 11111 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 4 | ltle 11198 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
| 5 | 4 | 3impia 1117 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
| 6 | 3, 5 | mp3an1 1450 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
| 7 | 6 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
| 8 | 7 | anim1i 615 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) |
| 9 | leopmuli 32108 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) → 0hop ≤op (𝐴 ·op 𝑇)) | |
| 10 | 2, 8, 9 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → 0hop ≤op (𝐴 ·op 𝑇)) |
| 11 | gt0ne0 11579 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 12 | rereccl 11836 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
| 13 | 11, 12 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
| 14 | 13 | 3adant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
| 15 | hmopm 31996 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | |
| 16 | 15 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ·op 𝑇) ∈ HrmOp) |
| 17 | recgt0 11964 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | |
| 18 | ltle 11198 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴))) | |
| 19 | 3, 13, 18 | sylancr 587 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴))) |
| 20 | 17, 19 | mpd 15 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
| 21 | 20 | 3adant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
| 22 | 14, 16, 21 | jca31 514 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴))) |
| 23 | leopmuli 32108 | . . . . 5 ⊢ ((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ (0 ≤ (1 / 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇))) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) | |
| 24 | 23 | anassrs 467 | . . . 4 ⊢ (((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴)) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
| 25 | 22, 24 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
| 26 | recn 11093 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 27 | 26 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
| 28 | 27, 11 | recid2d 11890 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1) |
| 29 | 28 | oveq1d 7361 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇)) |
| 30 | 29 | 3adant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇)) |
| 31 | 27, 11 | reccld 11887 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ) |
| 32 | 31 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ) |
| 33 | 26 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
| 34 | hmopf 31849 | . . . . . . 7 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
| 35 | 34 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝑇: ℋ⟶ ℋ) |
| 36 | homulass 31777 | . . . . . 6 ⊢ (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) | |
| 37 | 32, 33, 35, 36 | syl3anc 1373 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
| 38 | homullid 31775 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | |
| 39 | 34, 38 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ HrmOp → (1 ·op 𝑇) = 𝑇) |
| 40 | 39 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 ·op 𝑇) = 𝑇) |
| 41 | 30, 37, 40 | 3eqtr3d 2774 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇) |
| 42 | 41 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇) |
| 43 | 25, 42 | breqtrd 5117 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op 𝑇) |
| 44 | 10, 43 | impbida 800 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op (𝐴 ·op 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ⟶wf 6477 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 · cmul 11008 < clt 11143 ≤ cle 11144 / cdiv 11771 ℋchba 30894 ·op chot 30914 0hop ch0o 30918 HrmOpcho 30925 ≤op cleo 30933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 ax-hilex 30974 ax-hfvadd 30975 ax-hvcom 30976 ax-hvass 30977 ax-hv0cl 30978 ax-hvaddid 30979 ax-hfvmul 30980 ax-hvmulid 30981 ax-hvmulass 30982 ax-hvdistr1 30983 ax-hvdistr2 30984 ax-hvmul0 30985 ax-hfi 31054 ax-his1 31057 ax-his2 31058 ax-his3 31059 ax-his4 31060 ax-hcompl 31177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-acn 9832 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-rlim 15393 df-sum 15591 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-cn 23140 df-cnp 23141 df-lm 23142 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cfil 25180 df-cau 25181 df-cmet 25182 df-grpo 30468 df-gid 30469 df-ginv 30470 df-gdiv 30471 df-ablo 30520 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-vs 30574 df-nmcv 30575 df-ims 30576 df-dip 30676 df-ssp 30697 df-ph 30788 df-cbn 30838 df-hnorm 30943 df-hba 30944 df-hvsub 30946 df-hlim 30947 df-hcau 30948 df-sh 31182 df-ch 31196 df-oc 31227 df-ch0 31228 df-shs 31283 df-pjh 31370 df-hosum 31705 df-homul 31706 df-hodif 31707 df-h0op 31723 df-hmop 31819 df-leop 31827 |
| This theorem is referenced by: opsqrlem6 32120 |
| Copyright terms: Public domain | W3C validator |