Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > leopmul | Structured version Visualization version GIF version |
Description: The scalar product of a positive real and a positive operator is a positive operator. Exercise 1(ii) of [Retherford] p. 49. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leopmul | ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op (𝐴 ·op 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1145 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp)) | |
2 | 1 | adantr 484 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp)) |
3 | 0re 10686 | . . . . . 6 ⊢ 0 ∈ ℝ | |
4 | ltle 10772 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 4 | 3impia 1114 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
6 | 3, 5 | mp3an1 1445 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
7 | 6 | 3adant2 1128 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
8 | 7 | anim1i 617 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) |
9 | leopmuli 30020 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) → 0hop ≤op (𝐴 ·op 𝑇)) | |
10 | 2, 8, 9 | syl2anc 587 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → 0hop ≤op (𝐴 ·op 𝑇)) |
11 | gt0ne0 11148 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
12 | rereccl 11401 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
13 | 11, 12 | syldan 594 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
14 | 13 | 3adant2 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
15 | hmopm 29908 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | |
16 | 15 | 3adant3 1129 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ·op 𝑇) ∈ HrmOp) |
17 | recgt0 11529 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | |
18 | ltle 10772 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴))) | |
19 | 3, 13, 18 | sylancr 590 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴))) |
20 | 17, 19 | mpd 15 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
21 | 20 | 3adant2 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
22 | 14, 16, 21 | jca31 518 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴))) |
23 | leopmuli 30020 | . . . . 5 ⊢ ((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ (0 ≤ (1 / 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇))) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) | |
24 | 23 | anassrs 471 | . . . 4 ⊢ (((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴)) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
25 | 22, 24 | sylan 583 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
26 | recn 10670 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
27 | 26 | adantr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
28 | 27, 11 | recid2d 11455 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1) |
29 | 28 | oveq1d 7170 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇)) |
30 | 29 | 3adant2 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇)) |
31 | 27, 11 | reccld 11452 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ) |
32 | 31 | 3adant2 1128 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ) |
33 | 26 | 3ad2ant1 1130 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
34 | hmopf 29761 | . . . . . . 7 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
35 | 34 | 3ad2ant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝑇: ℋ⟶ ℋ) |
36 | homulass 29689 | . . . . . 6 ⊢ (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) | |
37 | 32, 33, 35, 36 | syl3anc 1368 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
38 | homulid2 29687 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | |
39 | 34, 38 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ HrmOp → (1 ·op 𝑇) = 𝑇) |
40 | 39 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 ·op 𝑇) = 𝑇) |
41 | 30, 37, 40 | 3eqtr3d 2801 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇) |
42 | 41 | adantr 484 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇) |
43 | 25, 42 | breqtrd 5061 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op 𝑇) |
44 | 10, 43 | impbida 800 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op (𝐴 ·op 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5035 ⟶wf 6335 (class class class)co 7155 ℂcc 10578 ℝcr 10579 0cc0 10580 1c1 10581 · cmul 10585 < clt 10718 ≤ cle 10719 / cdiv 11340 ℋchba 28806 ·op chot 28826 0hop ch0o 28830 HrmOpcho 28837 ≤op cleo 28845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-cc 9900 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 ax-addf 10659 ax-mulf 10660 ax-hilex 28886 ax-hfvadd 28887 ax-hvcom 28888 ax-hvass 28889 ax-hv0cl 28890 ax-hvaddid 28891 ax-hfvmul 28892 ax-hvmulid 28893 ax-hvmulass 28894 ax-hvdistr1 28895 ax-hvdistr2 28896 ax-hvmul0 28897 ax-hfi 28966 ax-his1 28969 ax-his2 28970 ax-his3 28971 ax-his4 28972 ax-hcompl 29089 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-supp 7841 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-2o 8118 df-oadd 8121 df-omul 8122 df-er 8304 df-map 8423 df-pm 8424 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fsupp 8872 df-fi 8913 df-sup 8944 df-inf 8945 df-oi 9012 df-card 9406 df-acn 9409 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-ioo 12788 df-ico 12790 df-icc 12791 df-fz 12945 df-fzo 13088 df-fl 13216 df-seq 13424 df-exp 13485 df-hash 13746 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-clim 14898 df-rlim 14899 df-sum 15096 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-starv 16643 df-sca 16644 df-vsca 16645 df-ip 16646 df-tset 16647 df-ple 16648 df-ds 16650 df-unif 16651 df-hom 16652 df-cco 16653 df-rest 16759 df-topn 16760 df-0g 16778 df-gsum 16779 df-topgen 16780 df-pt 16781 df-prds 16784 df-xrs 16838 df-qtop 16843 df-imas 16844 df-xps 16846 df-mre 16920 df-mrc 16921 df-acs 16923 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-mulg 18297 df-cntz 18519 df-cmn 18980 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-fbas 20168 df-fg 20169 df-cnfld 20172 df-top 21599 df-topon 21616 df-topsp 21638 df-bases 21651 df-cld 21724 df-ntr 21725 df-cls 21726 df-nei 21803 df-cn 21932 df-cnp 21933 df-lm 21934 df-haus 22020 df-tx 22267 df-hmeo 22460 df-fil 22551 df-fm 22643 df-flim 22644 df-flf 22645 df-xms 23027 df-ms 23028 df-tms 23029 df-cfil 23960 df-cau 23961 df-cmet 23962 df-grpo 28380 df-gid 28381 df-ginv 28382 df-gdiv 28383 df-ablo 28432 df-vc 28446 df-nv 28479 df-va 28482 df-ba 28483 df-sm 28484 df-0v 28485 df-vs 28486 df-nmcv 28487 df-ims 28488 df-dip 28588 df-ssp 28609 df-ph 28700 df-cbn 28750 df-hnorm 28855 df-hba 28856 df-hvsub 28858 df-hlim 28859 df-hcau 28860 df-sh 29094 df-ch 29108 df-oc 29139 df-ch0 29140 df-shs 29195 df-pjh 29282 df-hosum 29617 df-homul 29618 df-hodif 29619 df-h0op 29635 df-hmop 29731 df-leop 29739 |
This theorem is referenced by: opsqrlem6 30032 |
Copyright terms: Public domain | W3C validator |