HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopmul Structured version   Visualization version   GIF version

Theorem leopmul 29844
Description: The scalar product of a positive real and a positive operator is a positive operator. Exercise 1(ii) of [Retherford] p. 49. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopmul ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hopop 𝑇 ↔ 0hopop (𝐴 ·op 𝑇)))

Proof of Theorem leopmul
StepHypRef Expression
1 3simpa 1142 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp))
21adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hopop 𝑇) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp))
3 0re 10637 . . . . . 6 0 ∈ ℝ
4 ltle 10723 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
543impia 1111 . . . . . 6 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
63, 5mp3an1 1441 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
763adant2 1125 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ 𝐴)
87anim1i 614 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hopop 𝑇) → (0 ≤ 𝐴 ∧ 0hopop 𝑇))
9 leopmuli 29843 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hopop 𝑇)) → 0hopop (𝐴 ·op 𝑇))
102, 8, 9syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hopop 𝑇) → 0hopop (𝐴 ·op 𝑇))
11 gt0ne0 11099 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
12 rereccl 11352 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
1311, 12syldan 591 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
14133adant2 1125 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
15 hmopm 29731 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)
16153adant3 1126 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ·op 𝑇) ∈ HrmOp)
17 recgt0 11480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
18 ltle 10723 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴)))
193, 13, 18sylancr 587 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴)))
2017, 19mpd 15 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
21203adant2 1125 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
2214, 16, 21jca31 515 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴)))
23 leopmuli 29843 . . . . 5 ((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ (0 ≤ (1 / 𝐴) ∧ 0hopop (𝐴 ·op 𝑇))) → 0hopop ((1 / 𝐴) ·op (𝐴 ·op 𝑇)))
2423anassrs 468 . . . 4 (((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴)) ∧ 0hopop (𝐴 ·op 𝑇)) → 0hopop ((1 / 𝐴) ·op (𝐴 ·op 𝑇)))
2522, 24sylan 580 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hopop (𝐴 ·op 𝑇)) → 0hopop ((1 / 𝐴) ·op (𝐴 ·op 𝑇)))
26 recn 10621 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2726adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
2827, 11recid2d 11406 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1)
2928oveq1d 7165 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇))
30293adant2 1125 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇))
3127, 11reccld 11403 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
32313adant2 1125 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
33263ad2ant1 1127 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
34 hmopf 29584 . . . . . . 7 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
35343ad2ant2 1128 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝑇: ℋ⟶ ℋ)
36 homulass 29512 . . . . . 6 (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇)))
3732, 33, 35, 36syl3anc 1365 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇)))
38 homulid2 29510 . . . . . . 7 (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇)
3934, 38syl 17 . . . . . 6 (𝑇 ∈ HrmOp → (1 ·op 𝑇) = 𝑇)
40393ad2ant2 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 ·op 𝑇) = 𝑇)
4130, 37, 403eqtr3d 2869 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇)
4241adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hopop (𝐴 ·op 𝑇)) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇)
4325, 42breqtrd 5089 . 2 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hopop (𝐴 ·op 𝑇)) → 0hopop 𝑇)
4410, 43impbida 797 1 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hopop 𝑇 ↔ 0hopop (𝐴 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021   class class class wbr 5063  wf 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   · cmul 10536   < clt 10669  cle 10670   / cdiv 11291  chba 28629   ·op chot 28649   0hop ch0o 28653  HrmOpcho 28660  op cleo 28668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611  ax-hilex 28709  ax-hfvadd 28710  ax-hvcom 28711  ax-hvass 28712  ax-hv0cl 28713  ax-hvaddid 28714  ax-hfvmul 28715  ax-hvmulid 28716  ax-hvmulass 28717  ax-hvdistr1 28718  ax-hvdistr2 28719  ax-hvmul0 28720  ax-hfi 28789  ax-his1 28792  ax-his2 28793  ax-his3 28794  ax-his4 28795  ax-hcompl 28912
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-omul 8103  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-cn 21770  df-cnp 21771  df-lm 21772  df-haus 21858  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-xms 22864  df-ms 22865  df-tms 22866  df-cfil 23792  df-cau 23793  df-cmet 23794  df-grpo 28203  df-gid 28204  df-ginv 28205  df-gdiv 28206  df-ablo 28255  df-vc 28269  df-nv 28302  df-va 28305  df-ba 28306  df-sm 28307  df-0v 28308  df-vs 28309  df-nmcv 28310  df-ims 28311  df-dip 28411  df-ssp 28432  df-ph 28523  df-cbn 28573  df-hnorm 28678  df-hba 28679  df-hvsub 28681  df-hlim 28682  df-hcau 28683  df-sh 28917  df-ch 28931  df-oc 28962  df-ch0 28963  df-shs 29018  df-pjh 29105  df-hosum 29440  df-homul 29441  df-hodif 29442  df-h0op 29458  df-hmop 29554  df-leop 29562
This theorem is referenced by:  opsqrlem6  29855
  Copyright terms: Public domain W3C validator