Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > leopmul | Structured version Visualization version GIF version |
Description: The scalar product of a positive real and a positive operator is a positive operator. Exercise 1(ii) of [Retherford] p. 49. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leopmul | ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op (𝐴 ·op 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1147 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp)) | |
2 | 1 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → (𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp)) |
3 | 0re 10977 | . . . . . 6 ⊢ 0 ∈ ℝ | |
4 | ltle 11063 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 4 | 3impia 1116 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
6 | 3, 5 | mp3an1 1447 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
7 | 6 | 3adant2 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
8 | 7 | anim1i 615 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) |
9 | leopmuli 30495 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hop ≤op 𝑇)) → 0hop ≤op (𝐴 ·op 𝑇)) | |
10 | 2, 8, 9 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op 𝑇) → 0hop ≤op (𝐴 ·op 𝑇)) |
11 | gt0ne0 11440 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
12 | rereccl 11693 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
13 | 11, 12 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
14 | 13 | 3adant2 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
15 | hmopm 30383 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | |
16 | 15 | 3adant3 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (𝐴 ·op 𝑇) ∈ HrmOp) |
17 | recgt0 11821 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | |
18 | ltle 11063 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴))) | |
19 | 3, 13, 18 | sylancr 587 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) → 0 ≤ (1 / 𝐴))) |
20 | 17, 19 | mpd 15 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
21 | 20 | 3adant2 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
22 | 14, 16, 21 | jca31 515 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴))) |
23 | leopmuli 30495 | . . . . 5 ⊢ ((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ (0 ≤ (1 / 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇))) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) | |
24 | 23 | anassrs 468 | . . . 4 ⊢ (((((1 / 𝐴) ∈ ℝ ∧ (𝐴 ·op 𝑇) ∈ HrmOp) ∧ 0 ≤ (1 / 𝐴)) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
25 | 22, 24 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
26 | recn 10961 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
27 | 26 | adantr 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
28 | 27, 11 | recid2d 11747 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1) |
29 | 28 | oveq1d 7290 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇)) |
30 | 29 | 3adant2 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = (1 ·op 𝑇)) |
31 | 27, 11 | reccld 11744 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ) |
32 | 31 | 3adant2 1130 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ) |
33 | 26 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
34 | hmopf 30236 | . . . . . . 7 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
35 | 34 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → 𝑇: ℋ⟶ ℋ) |
36 | homulass 30164 | . . . . . 6 ⊢ (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) | |
37 | 32, 33, 35, 36 | syl3anc 1370 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (((1 / 𝐴) · 𝐴) ·op 𝑇) = ((1 / 𝐴) ·op (𝐴 ·op 𝑇))) |
38 | homulid2 30162 | . . . . . . 7 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | |
39 | 34, 38 | syl 17 | . . . . . 6 ⊢ (𝑇 ∈ HrmOp → (1 ·op 𝑇) = 𝑇) |
40 | 39 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → (1 ·op 𝑇) = 𝑇) |
41 | 30, 37, 40 | 3eqtr3d 2786 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇) |
42 | 41 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → ((1 / 𝐴) ·op (𝐴 ·op 𝑇)) = 𝑇) |
43 | 25, 42 | breqtrd 5100 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) ∧ 0hop ≤op (𝐴 ·op 𝑇)) → 0hop ≤op 𝑇) |
44 | 10, 43 | impbida 798 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ 0 < 𝐴) → ( 0hop ≤op 𝑇 ↔ 0hop ≤op (𝐴 ·op 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ⟶wf 6429 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 ≤ cle 11010 / cdiv 11632 ℋchba 29281 ·op chot 29301 0hop ch0o 29305 HrmOpcho 29312 ≤op cleo 29320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 ax-hilex 29361 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 ax-hv0cl 29365 ax-hvaddid 29366 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvmulass 29369 ax-hvdistr1 29370 ax-hvdistr2 29371 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 ax-his4 29447 ax-hcompl 29564 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-cn 22378 df-cnp 22379 df-lm 22380 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cfil 24419 df-cau 24420 df-cmet 24421 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-dip 29063 df-ssp 29084 df-ph 29175 df-cbn 29225 df-hnorm 29330 df-hba 29331 df-hvsub 29333 df-hlim 29334 df-hcau 29335 df-sh 29569 df-ch 29583 df-oc 29614 df-ch0 29615 df-shs 29670 df-pjh 29757 df-hosum 30092 df-homul 30093 df-hodif 30094 df-h0op 30110 df-hmop 30206 df-leop 30214 |
This theorem is referenced by: opsqrlem6 30507 |
Copyright terms: Public domain | W3C validator |