![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hosub4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hosub4 | ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) −op (𝑇 +op 𝑈)) = ((𝑅 −op 𝑇) +op (𝑆 −op 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | honegdi 29383 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 +op 𝑈)) = ((-1 ·op 𝑇) +op (-1 ·op 𝑈))) | |
2 | 1 | adantl 474 | . . . 4 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (-1 ·op (𝑇 +op 𝑈)) = ((-1 ·op 𝑇) +op (-1 ·op 𝑈))) |
3 | 2 | oveq2d 6991 | . . 3 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) +op (-1 ·op (𝑇 +op 𝑈))) = ((𝑅 +op 𝑆) +op ((-1 ·op 𝑇) +op (-1 ·op 𝑈)))) |
4 | neg1cn 11560 | . . . . . 6 ⊢ -1 ∈ ℂ | |
5 | homulcl 29333 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ) | |
6 | 4, 5 | mpan 678 | . . . . 5 ⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op 𝑇): ℋ⟶ ℋ) |
7 | homulcl 29333 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op 𝑈): ℋ⟶ ℋ) | |
8 | 4, 7 | mpan 678 | . . . . 5 ⊢ (𝑈: ℋ⟶ ℋ → (-1 ·op 𝑈): ℋ⟶ ℋ) |
9 | 6, 8 | anim12i 604 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((-1 ·op 𝑇): ℋ⟶ ℋ ∧ (-1 ·op 𝑈): ℋ⟶ ℋ)) |
10 | hoadd4 29358 | . . . 4 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ ((-1 ·op 𝑇): ℋ⟶ ℋ ∧ (-1 ·op 𝑈): ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) +op ((-1 ·op 𝑇) +op (-1 ·op 𝑈))) = ((𝑅 +op (-1 ·op 𝑇)) +op (𝑆 +op (-1 ·op 𝑈)))) | |
11 | 9, 10 | sylan2 584 | . . 3 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) +op ((-1 ·op 𝑇) +op (-1 ·op 𝑈))) = ((𝑅 +op (-1 ·op 𝑇)) +op (𝑆 +op (-1 ·op 𝑈)))) |
12 | 3, 11 | eqtrd 2809 | . 2 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) +op (-1 ·op (𝑇 +op 𝑈))) = ((𝑅 +op (-1 ·op 𝑇)) +op (𝑆 +op (-1 ·op 𝑈)))) |
13 | hoaddcl 29332 | . . 3 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (𝑅 +op 𝑆): ℋ⟶ ℋ) | |
14 | hoaddcl 29332 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ) | |
15 | honegsub 29373 | . . 3 ⊢ (((𝑅 +op 𝑆): ℋ⟶ ℋ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) → ((𝑅 +op 𝑆) +op (-1 ·op (𝑇 +op 𝑈))) = ((𝑅 +op 𝑆) −op (𝑇 +op 𝑈))) | |
16 | 13, 14, 15 | syl2an 587 | . 2 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) +op (-1 ·op (𝑇 +op 𝑈))) = ((𝑅 +op 𝑆) −op (𝑇 +op 𝑈))) |
17 | honegsub 29373 | . . . 4 ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑅 +op (-1 ·op 𝑇)) = (𝑅 −op 𝑇)) | |
18 | 17 | ad2ant2r 735 | . . 3 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝑅 +op (-1 ·op 𝑇)) = (𝑅 −op 𝑇)) |
19 | honegsub 29373 | . . . 4 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑆 +op (-1 ·op 𝑈)) = (𝑆 −op 𝑈)) | |
20 | 19 | ad2ant2l 734 | . . 3 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝑆 +op (-1 ·op 𝑈)) = (𝑆 −op 𝑈)) |
21 | 18, 20 | oveq12d 6993 | . 2 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op (-1 ·op 𝑇)) +op (𝑆 +op (-1 ·op 𝑈))) = ((𝑅 −op 𝑇) +op (𝑆 −op 𝑈))) |
22 | 12, 16, 21 | 3eqtr3d 2817 | 1 ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) −op (𝑇 +op 𝑈)) = ((𝑅 −op 𝑇) +op (𝑆 −op 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ⟶wf 6182 (class class class)co 6975 ℂcc 10332 1c1 10335 -cneg 10670 ℋchba 28491 +op chos 28510 ·op chot 28511 −op chod 28512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-inf2 8897 ax-cc 9654 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 ax-addf 10413 ax-mulf 10414 ax-hilex 28571 ax-hfvadd 28572 ax-hvcom 28573 ax-hvass 28574 ax-hv0cl 28575 ax-hvaddid 28576 ax-hfvmul 28577 ax-hvmulid 28578 ax-hvmulass 28579 ax-hvdistr1 28580 ax-hvdistr2 28581 ax-hvmul0 28582 ax-hfi 28651 ax-his1 28654 ax-his2 28655 ax-his3 28656 ax-his4 28657 ax-hcompl 28774 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-iin 4792 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-of 7226 df-om 7396 df-1st 7500 df-2nd 7501 df-supp 7633 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-2o 7905 df-oadd 7908 df-omul 7909 df-er 8088 df-map 8207 df-pm 8208 df-ixp 8259 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-fsupp 8628 df-fi 8669 df-sup 8700 df-inf 8701 df-oi 8768 df-card 9161 df-acn 9164 df-cda 9387 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-z 11793 df-dec 11911 df-uz 12058 df-q 12162 df-rp 12204 df-xneg 12323 df-xadd 12324 df-xmul 12325 df-ioo 12557 df-ico 12559 df-icc 12560 df-fz 12708 df-fzo 12849 df-fl 12976 df-seq 13184 df-exp 13244 df-hash 13505 df-cj 14318 df-re 14319 df-im 14320 df-sqrt 14454 df-abs 14455 df-clim 14705 df-rlim 14706 df-sum 14903 df-struct 16340 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-mulr 16434 df-starv 16435 df-sca 16436 df-vsca 16437 df-ip 16438 df-tset 16439 df-ple 16440 df-ds 16442 df-unif 16443 df-hom 16444 df-cco 16445 df-rest 16551 df-topn 16552 df-0g 16570 df-gsum 16571 df-topgen 16572 df-pt 16573 df-prds 16576 df-xrs 16630 df-qtop 16635 df-imas 16636 df-xps 16638 df-mre 16728 df-mrc 16729 df-acs 16731 df-mgm 17723 df-sgrp 17765 df-mnd 17776 df-submnd 17817 df-mulg 18025 df-cntz 18231 df-cmn 18681 df-psmet 20255 df-xmet 20256 df-met 20257 df-bl 20258 df-mopn 20259 df-fbas 20260 df-fg 20261 df-cnfld 20264 df-top 21222 df-topon 21239 df-topsp 21261 df-bases 21274 df-cld 21347 df-ntr 21348 df-cls 21349 df-nei 21426 df-cn 21555 df-cnp 21556 df-lm 21557 df-haus 21643 df-tx 21890 df-hmeo 22083 df-fil 22174 df-fm 22266 df-flim 22267 df-flf 22268 df-xms 22649 df-ms 22650 df-tms 22651 df-cfil 23577 df-cau 23578 df-cmet 23579 df-grpo 28063 df-gid 28064 df-ginv 28065 df-gdiv 28066 df-ablo 28115 df-vc 28129 df-nv 28162 df-va 28165 df-ba 28166 df-sm 28167 df-0v 28168 df-vs 28169 df-nmcv 28170 df-ims 28171 df-dip 28271 df-ssp 28292 df-ph 28383 df-cbn 28434 df-hnorm 28540 df-hba 28541 df-hvsub 28543 df-hlim 28544 df-hcau 28545 df-sh 28779 df-ch 28793 df-oc 28824 df-ch0 28825 df-shs 28882 df-pjh 28969 df-hosum 29304 df-homul 29305 df-hodif 29306 df-h0op 29322 |
This theorem is referenced by: hosubadd4 29388 |
Copyright terms: Public domain | W3C validator |