Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodcl3 Structured version   Visualization version   GIF version

Theorem hoiprodcl3 44008
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoiprodcl3.k 𝑘𝜑
hoiprodcl3.x (𝜑𝑋 ∈ Fin)
hoiprodcl3.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
hoiprodcl3.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
hoiprodcl3 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem hoiprodcl3
StepHypRef Expression
1 0xr 10953 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
3 pnfxr 10960 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 (𝜑 → +∞ ∈ ℝ*)
5 hoiprodcl3.k . . . 4 𝑘𝜑
6 hoiprodcl3.x . . . 4 (𝜑𝑋 ∈ Fin)
7 hoiprodcl3.a . . . . . 6 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
8 hoiprodcl3.b . . . . . 6 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
9 volico 43414 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
107, 8, 9syl2anc 583 . . . . 5 ((𝜑𝑘𝑋) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
118, 7resubcld 11333 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝐴) ∈ ℝ)
12 0red 10909 . . . . . 6 ((𝜑𝑘𝑋) → 0 ∈ ℝ)
1311, 12ifcld 4502 . . . . 5 ((𝜑𝑘𝑋) → if(𝐴 < 𝐵, (𝐵𝐴), 0) ∈ ℝ)
1410, 13eqeltrd 2839 . . . 4 ((𝜑𝑘𝑋) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
155, 6, 14fprodreclf 15597 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) ∈ ℝ)
1615rexrd 10956 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) ∈ ℝ*)
178rexrd 10956 . . . . 5 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
18 icombl 24633 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
197, 17, 18syl2anc 583 . . . 4 ((𝜑𝑘𝑋) → (𝐴[,)𝐵) ∈ dom vol)
20 volge0 43392 . . . 4 ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵)))
2119, 20syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘(𝐴[,)𝐵)))
225, 6, 14, 21fprodge0 15631 . 2 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)))
2315ltpnfd 12786 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) < +∞)
242, 4, 16, 22, 23elicod 13058 1 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  ifcif 4456   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  [,)cico 13010  cprod 15543  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534
This theorem is referenced by:  ovnhoilem1  44029
  Copyright terms: Public domain W3C validator