![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoiprodcl3 | Structured version Visualization version GIF version |
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoiprodcl3.k | ⊢ Ⅎ𝑘𝜑 |
hoiprodcl3.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoiprodcl3.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
hoiprodcl3.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
hoiprodcl3 | ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11283 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
3 | pnfxr 11290 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
5 | hoiprodcl3.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
6 | hoiprodcl3.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | hoiprodcl3.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
8 | hoiprodcl3.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
9 | volico 45294 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
10 | 7, 8, 9 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
11 | 8, 7 | resubcld 11664 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵 − 𝐴) ∈ ℝ) |
12 | 0red 11239 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ∈ ℝ) | |
13 | 11, 12 | ifcld 4570 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) ∈ ℝ) |
14 | 10, 13 | eqeltrd 2828 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(𝐴[,)𝐵)) ∈ ℝ) |
15 | 5, 6, 14 | fprodreclf 15927 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ ℝ) |
16 | 15 | rexrd 11286 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ ℝ*) |
17 | 8 | rexrd 11286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) |
18 | icombl 25480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol) | |
19 | 7, 17, 18 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴[,)𝐵) ∈ dom vol) |
20 | volge0 45272 | . . . 4 ⊢ ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵))) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ≤ (vol‘(𝐴[,)𝐵))) |
22 | 5, 6, 14, 21 | fprodge0 15961 | . 2 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵))) |
23 | 15 | ltpnfd 13125 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) < +∞) |
24 | 2, 4, 16, 22, 23 | elicod 13398 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ifcif 4524 class class class wbr 5142 dom cdm 5672 ‘cfv 6542 (class class class)co 7414 Fincfn 8955 ℝcr 11129 0cc0 11130 +∞cpnf 11267 ℝ*cxr 11269 < clt 11270 ≤ cle 11271 − cmin 11466 [,)cico 13350 ∏cprod 15873 volcvol 25379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-fl 13781 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-rlim 15457 df-sum 15657 df-prod 15874 df-rest 17395 df-topgen 17416 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-top 22783 df-topon 22800 df-bases 22836 df-cmp 23278 df-ovol 25380 df-vol 25381 |
This theorem is referenced by: ovnhoilem1 45912 |
Copyright terms: Public domain | W3C validator |