Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodcl3 Structured version   Visualization version   GIF version

Theorem hoiprodcl3 41535
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoiprodcl3.k 𝑘𝜑
hoiprodcl3.x (𝜑𝑋 ∈ Fin)
hoiprodcl3.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
hoiprodcl3.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
hoiprodcl3 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem hoiprodcl3
StepHypRef Expression
1 0xr 10376 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
3 pnfxr 10383 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 (𝜑 → +∞ ∈ ℝ*)
5 hoiprodcl3.k . . . 4 𝑘𝜑
6 hoiprodcl3.x . . . 4 (𝜑𝑋 ∈ Fin)
7 hoiprodcl3.a . . . . . 6 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
8 hoiprodcl3.b . . . . . 6 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
9 volico 40938 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
107, 8, 9syl2anc 580 . . . . 5 ((𝜑𝑘𝑋) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
118, 7resubcld 10751 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝐴) ∈ ℝ)
12 0red 10333 . . . . . 6 ((𝜑𝑘𝑋) → 0 ∈ ℝ)
1311, 12ifcld 4323 . . . . 5 ((𝜑𝑘𝑋) → if(𝐴 < 𝐵, (𝐵𝐴), 0) ∈ ℝ)
1410, 13eqeltrd 2879 . . . 4 ((𝜑𝑘𝑋) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
155, 6, 14fprodreclf 15025 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) ∈ ℝ)
1615rexrd 10379 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) ∈ ℝ*)
178rexrd 10379 . . . . 5 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
18 icombl 23671 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
197, 17, 18syl2anc 580 . . . 4 ((𝜑𝑘𝑋) → (𝐴[,)𝐵) ∈ dom vol)
20 volge0 40915 . . . 4 ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵)))
2119, 20syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘(𝐴[,)𝐵)))
225, 6, 14, 21fprodge0 15059 . 2 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)))
2315ltpnfd 12201 . 2 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) < +∞)
242, 4, 16, 22, 23elicod 12472 1 (𝜑 → ∏𝑘𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wnf 1879  wcel 2157  ifcif 4278   class class class wbr 4844  dom cdm 5313  cfv 6102  (class class class)co 6879  Fincfn 8196  cr 10224  0cc0 10225  +∞cpnf 10361  *cxr 10363   < clt 10364  cle 10365  cmin 10557  [,)cico 12425  cprod 14971  volcvol 23570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-pm 8099  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fi 8560  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-n0 11580  df-z 11666  df-uz 11930  df-q 12033  df-rp 12074  df-xneg 12192  df-xadd 12193  df-xmul 12194  df-ioo 12427  df-ico 12429  df-icc 12430  df-fz 12580  df-fzo 12720  df-fl 12847  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-clim 14559  df-rlim 14560  df-sum 14757  df-prod 14972  df-rest 16397  df-topgen 16418  df-psmet 20059  df-xmet 20060  df-met 20061  df-bl 20062  df-mopn 20063  df-top 21026  df-topon 21043  df-bases 21078  df-cmp 21518  df-ovol 23571  df-vol 23572
This theorem is referenced by:  ovnhoilem1  41556
  Copyright terms: Public domain W3C validator