![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoiprodcl3 | Structured version Visualization version GIF version |
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoiprodcl3.k | ⊢ Ⅎ𝑘𝜑 |
hoiprodcl3.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoiprodcl3.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
hoiprodcl3.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
hoiprodcl3 | ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10376 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
3 | pnfxr 10383 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
5 | hoiprodcl3.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
6 | hoiprodcl3.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | hoiprodcl3.a | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
8 | hoiprodcl3.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
9 | volico 40938 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
10 | 7, 8, 9 | syl2anc 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
11 | 8, 7 | resubcld 10751 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵 − 𝐴) ∈ ℝ) |
12 | 0red 10333 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ∈ ℝ) | |
13 | 11, 12 | ifcld 4323 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) ∈ ℝ) |
14 | 10, 13 | eqeltrd 2879 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘(𝐴[,)𝐵)) ∈ ℝ) |
15 | 5, 6, 14 | fprodreclf 15025 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ ℝ) |
16 | 15 | rexrd 10379 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ ℝ*) |
17 | 8 | rexrd 10379 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) |
18 | icombl 23671 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol) | |
19 | 7, 17, 18 | syl2anc 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴[,)𝐵) ∈ dom vol) |
20 | volge0 40915 | . . . 4 ⊢ ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵))) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 0 ≤ (vol‘(𝐴[,)𝐵))) |
22 | 5, 6, 14, 21 | fprodge0 15059 | . 2 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵))) |
23 | 15 | ltpnfd 12201 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) < +∞) |
24 | 2, 4, 16, 22, 23 | elicod 12472 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,)𝐵)) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 Ⅎwnf 1879 ∈ wcel 2157 ifcif 4278 class class class wbr 4844 dom cdm 5313 ‘cfv 6102 (class class class)co 6879 Fincfn 8196 ℝcr 10224 0cc0 10225 +∞cpnf 10361 ℝ*cxr 10363 < clt 10364 ≤ cle 10365 − cmin 10557 [,)cico 12425 ∏cprod 14971 volcvol 23570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-pre-sup 10303 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-2o 7801 df-oadd 7804 df-er 7983 df-map 8098 df-pm 8099 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-fi 8560 df-sup 8591 df-inf 8592 df-oi 8658 df-card 9052 df-cda 9279 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-2 11375 df-3 11376 df-n0 11580 df-z 11666 df-uz 11930 df-q 12033 df-rp 12074 df-xneg 12192 df-xadd 12193 df-xmul 12194 df-ioo 12427 df-ico 12429 df-icc 12430 df-fz 12580 df-fzo 12720 df-fl 12847 df-seq 13055 df-exp 13114 df-hash 13370 df-cj 14179 df-re 14180 df-im 14181 df-sqrt 14315 df-abs 14316 df-clim 14559 df-rlim 14560 df-sum 14757 df-prod 14972 df-rest 16397 df-topgen 16418 df-psmet 20059 df-xmet 20060 df-met 20061 df-bl 20062 df-mopn 20063 df-top 21026 df-topon 21043 df-bases 21078 df-cmp 21518 df-ovol 23571 df-vol 23572 |
This theorem is referenced by: ovnhoilem1 41556 |
Copyright terms: Public domain | W3C validator |