| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idsubc | Structured version Visualization version GIF version | ||
| Description: The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in [Adamek] p. 49. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfth.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idsubc.h | ⊢ 𝐻 = (Homf ‘𝐷) |
| Ref | Expression |
|---|---|
| idsubc | ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfth.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | id 22 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 3 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 4 | idsubc.h | . . 3 ⊢ 𝐻 = (Homf ‘𝐷) | |
| 5 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) = (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) | |
| 6 | 1, 2 | imaidfu2lem 49091 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ((1st ‘𝐼) “ (Base‘𝐷)) = (Base‘𝐷)) |
| 7 | 1, 2, 3, 4, 5, 6 | imaidfu2 49093 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 = (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝)))) |
| 8 | eqid 2729 | . . 3 ⊢ ((1st ‘𝐼) “ (Base‘𝐷)) = ((1st ‘𝐼) “ (Base‘𝐷)) | |
| 9 | 2 | func1st2nd 49058 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼)) |
| 10 | f1oi 6820 | . . . . . 6 ⊢ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) | |
| 11 | dff1o3 6788 | . . . . . 6 ⊢ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–onto→(Base‘𝐷) ∧ Fun ◡( I ↾ (Base‘𝐷)))) | |
| 12 | 10, 11 | mpbi 230 | . . . . 5 ⊢ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–onto→(Base‘𝐷) ∧ Fun ◡( I ↾ (Base‘𝐷))) |
| 13 | 12 | simpri 485 | . . . 4 ⊢ Fun ◡( I ↾ (Base‘𝐷)) |
| 14 | eqidd 2730 | . . . . . . 7 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (Base‘𝐷) = (Base‘𝐷)) | |
| 15 | 1, 2, 14 | idfu1sta 49083 | . . . . . 6 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼) = ( I ↾ (Base‘𝐷))) |
| 16 | 15 | cnveqd 5829 | . . . . 5 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ◡(1st ‘𝐼) = ◡( I ↾ (Base‘𝐷))) |
| 17 | 16 | funeqd 6522 | . . . 4 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (Fun ◡(1st ‘𝐼) ↔ Fun ◡( I ↾ (Base‘𝐷)))) |
| 18 | 13, 17 | mpbiri 258 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → Fun ◡(1st ‘𝐼)) |
| 19 | 8, 3, 5, 9, 18 | imasubc3 49138 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) ∈ (Subcat‘𝐸)) |
| 20 | 7, 19 | eqeltrd 2828 | 1 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 ∪ ciun 4951 I cid 5525 × cxp 5629 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 Fun wfun 6493 –onto→wfo 6497 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 Basecbs 17155 Hom chom 17207 Homf chomf 17607 Subcatcsubc 17751 Func cfunc 17796 idfunccidfu 17797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-pm 8779 df-ixp 8848 df-cat 17609 df-cid 17610 df-homf 17611 df-ssc 17752 df-subc 17754 df-func 17800 df-idfu 17801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |