| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idsubc | Structured version Visualization version GIF version | ||
| Description: The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in [Adamek] p. 49. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfth.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idsubc.h | ⊢ 𝐻 = (Homf ‘𝐷) |
| Ref | Expression |
|---|---|
| idsubc | ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfth.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | id 22 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 3 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 4 | idsubc.h | . . 3 ⊢ 𝐻 = (Homf ‘𝐷) | |
| 5 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) = (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) | |
| 6 | 1, 2 | imaidfu2lem 49209 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ((1st ‘𝐼) “ (Base‘𝐷)) = (Base‘𝐷)) |
| 7 | 1, 2, 3, 4, 5, 6 | imaidfu2 49211 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 = (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝)))) |
| 8 | eqid 2731 | . . 3 ⊢ ((1st ‘𝐼) “ (Base‘𝐷)) = ((1st ‘𝐼) “ (Base‘𝐷)) | |
| 9 | 2 | func1st2nd 49176 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼)) |
| 10 | f1oi 6801 | . . . . . 6 ⊢ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) | |
| 11 | dff1o3 6769 | . . . . . 6 ⊢ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–onto→(Base‘𝐷) ∧ Fun ◡( I ↾ (Base‘𝐷)))) | |
| 12 | 10, 11 | mpbi 230 | . . . . 5 ⊢ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–onto→(Base‘𝐷) ∧ Fun ◡( I ↾ (Base‘𝐷))) |
| 13 | 12 | simpri 485 | . . . 4 ⊢ Fun ◡( I ↾ (Base‘𝐷)) |
| 14 | eqidd 2732 | . . . . . . 7 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (Base‘𝐷) = (Base‘𝐷)) | |
| 15 | 1, 2, 14 | idfu1sta 49201 | . . . . . 6 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼) = ( I ↾ (Base‘𝐷))) |
| 16 | 15 | cnveqd 5814 | . . . . 5 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ◡(1st ‘𝐼) = ◡( I ↾ (Base‘𝐷))) |
| 17 | 16 | funeqd 6503 | . . . 4 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (Fun ◡(1st ‘𝐼) ↔ Fun ◡( I ↾ (Base‘𝐷)))) |
| 18 | 13, 17 | mpbiri 258 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → Fun ◡(1st ‘𝐼)) |
| 19 | 8, 3, 5, 9, 18 | imasubc3 49256 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) ∈ (Subcat‘𝐸)) |
| 20 | 7, 19 | eqeltrd 2831 | 1 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 ∪ ciun 4939 I cid 5508 × cxp 5612 ◡ccnv 5613 ↾ cres 5616 “ cima 5617 Fun wfun 6475 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 Hom chom 17172 Homf chomf 17572 Subcatcsubc 17716 Func cfunc 17761 idfunccidfu 17762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-pm 8753 df-ixp 8822 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-subc 17719 df-func 17765 df-idfu 17766 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |