| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idsubc | Structured version Visualization version GIF version | ||
| Description: The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in [Adamek] p. 49. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfth.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idsubc.h | ⊢ 𝐻 = (Homf ‘𝐷) |
| Ref | Expression |
|---|---|
| idsubc | ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfth.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | id 22 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 3 | eqid 2735 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 4 | idsubc.h | . . 3 ⊢ 𝐻 = (Homf ‘𝐷) | |
| 5 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) = (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) | |
| 6 | 1, 2 | imaidfu2lem 49016 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ((1st ‘𝐼) “ (Base‘𝐷)) = (Base‘𝐷)) |
| 7 | 1, 2, 3, 4, 5, 6 | imaidfu2 49018 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 = (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝)))) |
| 8 | eqid 2735 | . . 3 ⊢ ((1st ‘𝐼) “ (Base‘𝐷)) = ((1st ‘𝐼) “ (Base‘𝐷)) | |
| 9 | 2 | func1st2nd 48991 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼)) |
| 10 | f1oi 6855 | . . . . . 6 ⊢ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) | |
| 11 | dff1o3 6823 | . . . . . 6 ⊢ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–onto→(Base‘𝐷) ∧ Fun ◡( I ↾ (Base‘𝐷)))) | |
| 12 | 10, 11 | mpbi 230 | . . . . 5 ⊢ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–onto→(Base‘𝐷) ∧ Fun ◡( I ↾ (Base‘𝐷))) |
| 13 | 12 | simpri 485 | . . . 4 ⊢ Fun ◡( I ↾ (Base‘𝐷)) |
| 14 | eqidd 2736 | . . . . . . 7 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (Base‘𝐷) = (Base‘𝐷)) | |
| 15 | 1, 2, 14 | idfu1sta 49008 | . . . . . 6 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼) = ( I ↾ (Base‘𝐷))) |
| 16 | 15 | cnveqd 5855 | . . . . 5 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ◡(1st ‘𝐼) = ◡( I ↾ (Base‘𝐷))) |
| 17 | 16 | funeqd 6557 | . . . 4 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (Fun ◡(1st ‘𝐼) ↔ Fun ◡( I ↾ (Base‘𝐷)))) |
| 18 | 13, 17 | mpbiri 258 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → Fun ◡(1st ‘𝐼)) |
| 19 | 8, 3, 5, 9, 18 | imasubc3 49044 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) ∈ (Subcat‘𝐸)) |
| 20 | 7, 19 | eqeltrd 2834 | 1 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 ∪ ciun 4967 I cid 5547 × cxp 5652 ◡ccnv 5653 ↾ cres 5656 “ cima 5657 Fun wfun 6524 –onto→wfo 6528 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 1st c1st 7984 2nd c2nd 7985 Basecbs 17226 Hom chom 17280 Homf chomf 17676 Subcatcsubc 17820 Func cfunc 17865 idfunccidfu 17866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-map 8840 df-pm 8841 df-ixp 8910 df-cat 17678 df-cid 17679 df-homf 17680 df-ssc 17821 df-subc 17823 df-func 17869 df-idfu 17870 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |