| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idsubc | Structured version Visualization version GIF version | ||
| Description: The source category of an inclusion functor is a subcategory of the target category. See also Remark 4.4 in [Adamek] p. 49. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfth.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idsubc.h | ⊢ 𝐻 = (Homf ‘𝐷) |
| Ref | Expression |
|---|---|
| idsubc | ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfth.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | id 22 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 3 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 4 | idsubc.h | . . 3 ⊢ 𝐻 = (Homf ‘𝐷) | |
| 5 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) = (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) | |
| 6 | 1, 2 | imaidfu2lem 49104 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ((1st ‘𝐼) “ (Base‘𝐷)) = (Base‘𝐷)) |
| 7 | 1, 2, 3, 4, 5, 6 | imaidfu2 49106 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 = (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝)))) |
| 8 | eqid 2729 | . . 3 ⊢ ((1st ‘𝐼) “ (Base‘𝐷)) = ((1st ‘𝐼) “ (Base‘𝐷)) | |
| 9 | 2 | func1st2nd 49071 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼)) |
| 10 | f1oi 6802 | . . . . . 6 ⊢ ( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) | |
| 11 | dff1o3 6770 | . . . . . 6 ⊢ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–1-1-onto→(Base‘𝐷) ↔ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–onto→(Base‘𝐷) ∧ Fun ◡( I ↾ (Base‘𝐷)))) | |
| 12 | 10, 11 | mpbi 230 | . . . . 5 ⊢ (( I ↾ (Base‘𝐷)):(Base‘𝐷)–onto→(Base‘𝐷) ∧ Fun ◡( I ↾ (Base‘𝐷))) |
| 13 | 12 | simpri 485 | . . . 4 ⊢ Fun ◡( I ↾ (Base‘𝐷)) |
| 14 | eqidd 2730 | . . . . . . 7 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (Base‘𝐷) = (Base‘𝐷)) | |
| 15 | 1, 2, 14 | idfu1sta 49096 | . . . . . 6 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼) = ( I ↾ (Base‘𝐷))) |
| 16 | 15 | cnveqd 5818 | . . . . 5 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ◡(1st ‘𝐼) = ◡( I ↾ (Base‘𝐷))) |
| 17 | 16 | funeqd 6504 | . . . 4 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (Fun ◡(1st ‘𝐼) ↔ Fun ◡( I ↾ (Base‘𝐷)))) |
| 18 | 13, 17 | mpbiri 258 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → Fun ◡(1st ‘𝐼)) |
| 19 | 8, 3, 5, 9, 18 | imasubc3 49151 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝑥 ∈ ((1st ‘𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st ‘𝐼) “ (Base‘𝐷)) ↦ ∪ 𝑝 ∈ ((◡(1st ‘𝐼) “ {𝑥}) × (◡(1st ‘𝐼) “ {𝑦}))(((2nd ‘𝐼)‘𝑝) “ ((Hom ‘𝐷)‘𝑝))) ∈ (Subcat‘𝐸)) |
| 20 | 7, 19 | eqeltrd 2828 | 1 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐻 ∈ (Subcat‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 ∪ ciun 4941 I cid 5513 × cxp 5617 ◡ccnv 5618 ↾ cres 5621 “ cima 5622 Fun wfun 6476 –onto→wfo 6480 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 Basecbs 17120 Hom chom 17172 Homf chomf 17572 Subcatcsubc 17716 Func cfunc 17761 idfunccidfu 17762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-pm 8756 df-ixp 8825 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-subc 17719 df-func 17765 df-idfu 17766 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |