Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaidfu2 Structured version   Visualization version   GIF version

Theorem imaidfu2 49093
Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
imaidfu.i 𝐼 = (idfunc𝐶)
imaidfu.d (𝜑𝐼 ∈ (𝐷 Func 𝐸))
imaidfu.h 𝐻 = (Hom ‘𝐷)
imaidfu.j 𝐽 = (Homf𝐷)
imaidfu.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
imaidfu2.s (𝜑𝑆 = (Base‘𝐷))
Assertion
Ref Expression
imaidfu2 (𝜑𝐽 = 𝐾)
Distinct variable groups:   𝑥,𝐷,𝑦   𝐻,𝑝,𝑥,𝑦   𝐼,𝑝,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑝)   𝑆(𝑥,𝑦,𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaidfu2
StepHypRef Expression
1 imaidfu.i . . . 4 𝐼 = (idfunc𝐶)
2 imaidfu.d . . . 4 (𝜑𝐼 ∈ (𝐷 Func 𝐸))
3 imaidfu.h . . . 4 𝐻 = (Hom ‘𝐷)
4 imaidfu.j . . . 4 𝐽 = (Homf𝐷)
5 eqid 2729 . . . 4 (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))) = (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
6 eqid 2729 . . . 4 ((1st𝐼) “ (Base‘𝐷)) = ((1st𝐼) “ (Base‘𝐷))
71, 2, 3, 4, 5, 6imaidfu 49092 . . 3 (𝜑 → (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))) = (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))))
8 eqidd 2730 . . . . . . . . 9 (𝜑 → (Base‘𝐷) = (Base‘𝐷))
91, 2, 8idfu1sta 49083 . . . . . . . 8 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
109imaeq1d 6019 . . . . . . 7 (𝜑 → ((1st𝐼) “ (Base‘𝐷)) = (( I ↾ (Base‘𝐷)) “ (Base‘𝐷)))
11 ssid 3966 . . . . . . . 8 (Base‘𝐷) ⊆ (Base‘𝐷)
12 resiima 6036 . . . . . . . 8 ((Base‘𝐷) ⊆ (Base‘𝐷) → (( I ↾ (Base‘𝐷)) “ (Base‘𝐷)) = (Base‘𝐷))
1311, 12ax-mp 5 . . . . . . 7 (( I ↾ (Base‘𝐷)) “ (Base‘𝐷)) = (Base‘𝐷)
1410, 13eqtrdi 2780 . . . . . 6 (𝜑 → ((1st𝐼) “ (Base‘𝐷)) = (Base‘𝐷))
1514sqxpeqd 5663 . . . . 5 (𝜑 → (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷))) = ((Base‘𝐷) × (Base‘𝐷)))
1615reseq2d 5939 . . . 4 (𝜑 → (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))) = (𝐽 ↾ ((Base‘𝐷) × (Base‘𝐷))))
17 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
184, 17homffn 17634 . . . . 5 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷))
19 fnresdm 6619 . . . . 5 (𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) → (𝐽 ↾ ((Base‘𝐷) × (Base‘𝐷))) = 𝐽)
2018, 19ax-mp 5 . . . 4 (𝐽 ↾ ((Base‘𝐷) × (Base‘𝐷))) = 𝐽
2116, 20eqtrdi 2780 . . 3 (𝜑 → (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))) = 𝐽)
22 imaidfu2.s . . . . 5 (𝜑𝑆 = (Base‘𝐷))
2313, 10, 223eqtr4a 2790 . . . 4 (𝜑 → ((1st𝐼) “ (Base‘𝐷)) = 𝑆)
24 eqidd 2730 . . . 4 (𝜑 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)) = 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
2523, 23, 24mpoeq123dv 7444 . . 3 (𝜑 → (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))) = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))))
267, 21, 253eqtr3d 2772 . 2 (𝜑𝐽 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))))
27 imaidfu.k . 2 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
2826, 27eqtr4di 2782 1 (𝜑𝐽 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  {csn 4585   ciun 4951   I cid 5525   × cxp 5629  ccnv 5630  cres 5633  cima 5634   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Homf chomf 17607   Func cfunc 17796  idfunccidfu 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-func 17800  df-idfu 17801
This theorem is referenced by:  idsubc  49142  idfullsubc  49143
  Copyright terms: Public domain W3C validator