Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaidfu2 Structured version   Visualization version   GIF version

Theorem imaidfu2 49104
Description: The image of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
imaidfu.i 𝐼 = (idfunc𝐶)
imaidfu.d (𝜑𝐼 ∈ (𝐷 Func 𝐸))
imaidfu.h 𝐻 = (Hom ‘𝐷)
imaidfu.j 𝐽 = (Homf𝐷)
imaidfu.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
imaidfu2.s (𝜑𝑆 = (Base‘𝐷))
Assertion
Ref Expression
imaidfu2 (𝜑𝐽 = 𝐾)
Distinct variable groups:   𝑥,𝐷,𝑦   𝐻,𝑝,𝑥,𝑦   𝐼,𝑝,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑝)   𝑆(𝑥,𝑦,𝑝)   𝐸(𝑥,𝑦,𝑝)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imaidfu2
StepHypRef Expression
1 imaidfu.i . . . 4 𝐼 = (idfunc𝐶)
2 imaidfu.d . . . 4 (𝜑𝐼 ∈ (𝐷 Func 𝐸))
3 imaidfu.h . . . 4 𝐻 = (Hom ‘𝐷)
4 imaidfu.j . . . 4 𝐽 = (Homf𝐷)
5 eqid 2730 . . . 4 (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))) = (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
6 eqid 2730 . . . 4 ((1st𝐼) “ (Base‘𝐷)) = ((1st𝐼) “ (Base‘𝐷))
71, 2, 3, 4, 5, 6imaidfu 49103 . . 3 (𝜑 → (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))) = (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))))
8 eqidd 2731 . . . . . . . . 9 (𝜑 → (Base‘𝐷) = (Base‘𝐷))
91, 2, 8idfu1sta 49094 . . . . . . . 8 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐷)))
109imaeq1d 6033 . . . . . . 7 (𝜑 → ((1st𝐼) “ (Base‘𝐷)) = (( I ↾ (Base‘𝐷)) “ (Base‘𝐷)))
11 ssid 3972 . . . . . . . 8 (Base‘𝐷) ⊆ (Base‘𝐷)
12 resiima 6050 . . . . . . . 8 ((Base‘𝐷) ⊆ (Base‘𝐷) → (( I ↾ (Base‘𝐷)) “ (Base‘𝐷)) = (Base‘𝐷))
1311, 12ax-mp 5 . . . . . . 7 (( I ↾ (Base‘𝐷)) “ (Base‘𝐷)) = (Base‘𝐷)
1410, 13eqtrdi 2781 . . . . . 6 (𝜑 → ((1st𝐼) “ (Base‘𝐷)) = (Base‘𝐷))
1514sqxpeqd 5673 . . . . 5 (𝜑 → (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷))) = ((Base‘𝐷) × (Base‘𝐷)))
1615reseq2d 5953 . . . 4 (𝜑 → (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))) = (𝐽 ↾ ((Base‘𝐷) × (Base‘𝐷))))
17 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
184, 17homffn 17661 . . . . 5 𝐽 Fn ((Base‘𝐷) × (Base‘𝐷))
19 fnresdm 6640 . . . . 5 (𝐽 Fn ((Base‘𝐷) × (Base‘𝐷)) → (𝐽 ↾ ((Base‘𝐷) × (Base‘𝐷))) = 𝐽)
2018, 19ax-mp 5 . . . 4 (𝐽 ↾ ((Base‘𝐷) × (Base‘𝐷))) = 𝐽
2116, 20eqtrdi 2781 . . 3 (𝜑 → (𝐽 ↾ (((1st𝐼) “ (Base‘𝐷)) × ((1st𝐼) “ (Base‘𝐷)))) = 𝐽)
22 imaidfu2.s . . . . 5 (𝜑𝑆 = (Base‘𝐷))
2313, 10, 223eqtr4a 2791 . . . 4 (𝜑 → ((1st𝐼) “ (Base‘𝐷)) = 𝑆)
24 eqidd 2731 . . . 4 (𝜑 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)) = 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
2523, 23, 24mpoeq123dv 7467 . . 3 (𝜑 → (𝑥 ∈ ((1st𝐼) “ (Base‘𝐷)), 𝑦 ∈ ((1st𝐼) “ (Base‘𝐷)) ↦ 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))) = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))))
267, 21, 253eqtr3d 2773 . 2 (𝜑𝐽 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝))))
27 imaidfu.k . 2 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ (((1st𝐼) “ {𝑥}) × ((1st𝐼) “ {𝑦}))(((2nd𝐼)‘𝑝) “ (𝐻𝑝)))
2826, 27eqtr4di 2783 1 (𝜑𝐽 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  {csn 4592   ciun 4958   I cid 5535   × cxp 5639  ccnv 5640  cres 5643  cima 5644   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  Homf chomf 17634   Func cfunc 17823  idfunccidfu 17824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-homf 17638  df-func 17827  df-idfu 17828
This theorem is referenced by:  idsubc  49153  idfullsubc  49154
  Copyright terms: Public domain W3C validator