Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mdetralt2 | Structured version Visualization version GIF version |
Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mdetralt2.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetralt2.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetralt2.z | ⊢ 0 = (0g‘𝑅) |
mdetralt2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetralt2.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetralt2.x | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
mdetralt2.y | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
mdetralt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mdetralt2.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
mdetralt2.ij | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
Ref | Expression |
---|---|
mdetralt2 | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetralt2.d | . 2 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | eqid 2738 | . 2 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
3 | eqid 2738 | . 2 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
4 | mdetralt2.z | . 2 ⊢ 0 = (0g‘𝑅) | |
5 | mdetralt2.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
6 | mdetralt2.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
7 | mdetralt2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
8 | mdetralt2.x | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
9 | 8 | 3adant2 1129 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
10 | mdetralt2.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) | |
11 | 9, 10 | ifcld 4502 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐽, 𝑋, 𝑌) ∈ 𝐾) |
12 | 9, 11 | ifcld 4502 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) ∈ 𝐾) |
13 | 2, 6, 3, 7, 5, 12 | matbas2d 21480 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) ∈ (Base‘(𝑁 Mat 𝑅))) |
14 | mdetralt2.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
15 | mdetralt2.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
16 | mdetralt2.ij | . 2 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
17 | eqidd 2739 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) | |
18 | iftrue 4462 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) | |
19 | 18 | ad2antrl 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
20 | csbeq1a 3842 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) | |
21 | 20 | ad2antll 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
22 | 19, 21 | eqtrd 2778 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
23 | eqidd 2739 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐼) → 𝑁 = 𝑁) | |
24 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝑤 ∈ 𝑁) | |
26 | nfv 1918 | . . . . . . 7 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ 𝑁) | |
27 | nfcsb1v 3853 | . . . . . . . 8 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 | |
28 | 27 | nfel1 2922 | . . . . . . 7 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾 |
29 | 26, 28 | nfim 1900 | . . . . . 6 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
30 | eleq1w 2821 | . . . . . . . 8 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁)) | |
31 | 30 | anbi2d 628 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ 𝑁) ↔ (𝜑 ∧ 𝑤 ∈ 𝑁))) |
32 | 20 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑋 ∈ 𝐾 ↔ ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾)) |
33 | 31, 32 | imbi12d 344 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) ↔ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾))) |
34 | 29, 33, 8 | chvarfv 2236 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
35 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑤 ∈ 𝑁) | |
36 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑗𝐼 | |
37 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑖𝑤 | |
38 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑖⦋𝑤 / 𝑗⦌𝑋 | |
39 | 17, 22, 23, 24, 25, 34, 35, 26, 36, 37, 38, 27 | ovmpodxf 7401 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
40 | iftrue 4462 | . . . . . . . . 9 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐽, 𝑋, 𝑌) = 𝑋) | |
41 | 40 | ifeq2d 4476 | . . . . . . . 8 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = if(𝑖 = 𝐼, 𝑋, 𝑋)) |
42 | ifid 4496 | . . . . . . . 8 ⊢ if(𝑖 = 𝐼, 𝑋, 𝑋) = 𝑋 | |
43 | 41, 42 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
44 | 43 | ad2antrl 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
45 | 20 | ad2antll 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
46 | 44, 45 | eqtrd 2778 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
47 | eqidd 2739 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐽) → 𝑁 = 𝑁) | |
48 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
49 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑗𝐽 | |
50 | 17, 46, 47, 48, 25, 34, 35, 26, 49, 37, 38, 27 | ovmpodxf 7401 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
51 | 39, 50 | eqtr4d 2781 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
52 | 51 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑁 (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
53 | 1, 2, 3, 4, 5, 13, 14, 15, 16, 52 | mdetralt 21665 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⦋csb 3828 ifcif 4456 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Fincfn 8691 Basecbs 16840 0gc0g 17067 CRingccrg 19699 Mat cmat 21464 maDet cmdat 21641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-minusg 18496 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-oppg 18865 df-symg 18890 df-pmtr 18965 df-psgn 19014 df-evpm 19015 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-dsmm 20849 df-frlm 20864 df-mat 21465 df-mdet 21642 |
This theorem is referenced by: mdetero 21667 madurid 21701 |
Copyright terms: Public domain | W3C validator |