Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetralt2 Structured version   Visualization version   GIF version

Theorem mdetralt2 21314
 Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetralt2.d 𝐷 = (𝑁 maDet 𝑅)
mdetralt2.k 𝐾 = (Base‘𝑅)
mdetralt2.z 0 = (0g𝑅)
mdetralt2.r (𝜑𝑅 ∈ CRing)
mdetralt2.n (𝜑𝑁 ∈ Fin)
mdetralt2.x ((𝜑𝑗𝑁) → 𝑋𝐾)
mdetralt2.y ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
mdetralt2.i (𝜑𝐼𝑁)
mdetralt2.j (𝜑𝐽𝑁)
mdetralt2.ij (𝜑𝐼𝐽)
Assertion
Ref Expression
mdetralt2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 )
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑋
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem mdetralt2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mdetralt2.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2758 . 2 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2758 . 2 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 mdetralt2.z . 2 0 = (0g𝑅)
5 mdetralt2.r . 2 (𝜑𝑅 ∈ CRing)
6 mdetralt2.k . . 3 𝐾 = (Base‘𝑅)
7 mdetralt2.n . . 3 (𝜑𝑁 ∈ Fin)
8 mdetralt2.x . . . . 5 ((𝜑𝑗𝑁) → 𝑋𝐾)
983adant2 1128 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
10 mdetralt2.y . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
119, 10ifcld 4469 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐽, 𝑋, 𝑌) ∈ 𝐾)
129, 11ifcld 4469 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) ∈ 𝐾)
132, 6, 3, 7, 5, 12matbas2d 21128 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) ∈ (Base‘(𝑁 Mat 𝑅)))
14 mdetralt2.i . 2 (𝜑𝐼𝑁)
15 mdetralt2.j . 2 (𝜑𝐽𝑁)
16 mdetralt2.ij . 2 (𝜑𝐼𝐽)
17 eqidd 2759 . . . . 5 ((𝜑𝑤𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))))
18 iftrue 4429 . . . . . . 7 (𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
1918ad2antrl 727 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
20 csbeq1a 3821 . . . . . . 7 (𝑗 = 𝑤𝑋 = 𝑤 / 𝑗𝑋)
2120ad2antll 728 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → 𝑋 = 𝑤 / 𝑗𝑋)
2219, 21eqtrd 2793 . . . . 5 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑤 / 𝑗𝑋)
23 eqidd 2759 . . . . 5 (((𝜑𝑤𝑁) ∧ 𝑖 = 𝐼) → 𝑁 = 𝑁)
2414adantr 484 . . . . 5 ((𝜑𝑤𝑁) → 𝐼𝑁)
25 simpr 488 . . . . 5 ((𝜑𝑤𝑁) → 𝑤𝑁)
26 nfv 1915 . . . . . . 7 𝑗(𝜑𝑤𝑁)
27 nfcsb1v 3831 . . . . . . . 8 𝑗𝑤 / 𝑗𝑋
2827nfel1 2935 . . . . . . 7 𝑗𝑤 / 𝑗𝑋𝐾
2926, 28nfim 1897 . . . . . 6 𝑗((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)
30 eleq1w 2834 . . . . . . . 8 (𝑗 = 𝑤 → (𝑗𝑁𝑤𝑁))
3130anbi2d 631 . . . . . . 7 (𝑗 = 𝑤 → ((𝜑𝑗𝑁) ↔ (𝜑𝑤𝑁)))
3220eleq1d 2836 . . . . . . 7 (𝑗 = 𝑤 → (𝑋𝐾𝑤 / 𝑗𝑋𝐾))
3331, 32imbi12d 348 . . . . . 6 (𝑗 = 𝑤 → (((𝜑𝑗𝑁) → 𝑋𝐾) ↔ ((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)))
3429, 33, 8chvarfv 2240 . . . . 5 ((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)
35 nfv 1915 . . . . 5 𝑖(𝜑𝑤𝑁)
36 nfcv 2919 . . . . 5 𝑗𝐼
37 nfcv 2919 . . . . 5 𝑖𝑤
38 nfcv 2919 . . . . 5 𝑖𝑤 / 𝑗𝑋
3917, 22, 23, 24, 25, 34, 35, 26, 36, 37, 38, 27ovmpodxf 7300 . . . 4 ((𝜑𝑤𝑁) → (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = 𝑤 / 𝑗𝑋)
40 iftrue 4429 . . . . . . . . 9 (𝑖 = 𝐽 → if(𝑖 = 𝐽, 𝑋, 𝑌) = 𝑋)
4140ifeq2d 4443 . . . . . . . 8 (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = if(𝑖 = 𝐼, 𝑋, 𝑋))
42 ifid 4463 . . . . . . . 8 if(𝑖 = 𝐼, 𝑋, 𝑋) = 𝑋
4341, 42eqtrdi 2809 . . . . . . 7 (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
4443ad2antrl 727 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
4520ad2antll 728 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → 𝑋 = 𝑤 / 𝑗𝑋)
4644, 45eqtrd 2793 . . . . 5 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑤 / 𝑗𝑋)
47 eqidd 2759 . . . . 5 (((𝜑𝑤𝑁) ∧ 𝑖 = 𝐽) → 𝑁 = 𝑁)
4815adantr 484 . . . . 5 ((𝜑𝑤𝑁) → 𝐽𝑁)
49 nfcv 2919 . . . . 5 𝑗𝐽
5017, 46, 47, 48, 25, 34, 35, 26, 49, 37, 38, 27ovmpodxf 7300 . . . 4 ((𝜑𝑤𝑁) → (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = 𝑤 / 𝑗𝑋)
5139, 50eqtr4d 2796 . . 3 ((𝜑𝑤𝑁) → (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤))
5251ralrimiva 3113 . 2 (𝜑 → ∀𝑤𝑁 (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤))
531, 2, 3, 4, 5, 13, 14, 15, 16, 52mdetralt 21313 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ⦋csb 3807  ifcif 4423  ‘cfv 6339  (class class class)co 7155   ∈ cmpo 7157  Fincfn 8532  Basecbs 16546  0gc0g 16776  CRingccrg 19371   Mat cmat 21112   maDet cmdat 21289 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-addf 10659  ax-mulf 10660 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-tpos 7907  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-sup 8944  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-xnn0 12012  df-z 12026  df-dec 12143  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-seq 13424  df-exp 13485  df-hash 13746  df-word 13919  df-lsw 13967  df-concat 13975  df-s1 14002  df-substr 14055  df-pfx 14085  df-splice 14164  df-reverse 14173  df-s2 14262  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-hom 16652  df-cco 16653  df-0g 16778  df-gsum 16779  df-prds 16784  df-pws 16786  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-mhm 18027  df-submnd 18028  df-efmnd 18105  df-grp 18177  df-minusg 18178  df-mulg 18297  df-subg 18348  df-ghm 18428  df-gim 18471  df-cntz 18519  df-oppg 18546  df-symg 18568  df-pmtr 18642  df-psgn 18691  df-evpm 18692  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-cring 19373  df-oppr 19449  df-dvdsr 19467  df-unit 19468  df-invr 19498  df-dvr 19509  df-rnghom 19543  df-drng 19577  df-subrg 19606  df-sra 20017  df-rgmod 20018  df-cnfld 20172  df-zring 20244  df-zrh 20278  df-dsmm 20502  df-frlm 20517  df-mat 21113  df-mdet 21290 This theorem is referenced by:  mdetero  21315  madurid  21349
 Copyright terms: Public domain W3C validator