MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetralt2 Structured version   Visualization version   GIF version

Theorem mdetralt2 21314
Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetralt2.d 𝐷 = (𝑁 maDet 𝑅)
mdetralt2.k 𝐾 = (Base‘𝑅)
mdetralt2.z 0 = (0g𝑅)
mdetralt2.r (𝜑𝑅 ∈ CRing)
mdetralt2.n (𝜑𝑁 ∈ Fin)
mdetralt2.x ((𝜑𝑗𝑁) → 𝑋𝐾)
mdetralt2.y ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
mdetralt2.i (𝜑𝐼𝑁)
mdetralt2.j (𝜑𝐽𝑁)
mdetralt2.ij (𝜑𝐼𝐽)
Assertion
Ref Expression
mdetralt2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 )
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑋
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem mdetralt2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mdetralt2.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2758 . 2 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2758 . 2 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 mdetralt2.z . 2 0 = (0g𝑅)
5 mdetralt2.r . 2 (𝜑𝑅 ∈ CRing)
6 mdetralt2.k . . 3 𝐾 = (Base‘𝑅)
7 mdetralt2.n . . 3 (𝜑𝑁 ∈ Fin)
8 mdetralt2.x . . . . 5 ((𝜑𝑗𝑁) → 𝑋𝐾)
983adant2 1128 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
10 mdetralt2.y . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
119, 10ifcld 4469 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐽, 𝑋, 𝑌) ∈ 𝐾)
129, 11ifcld 4469 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) ∈ 𝐾)
132, 6, 3, 7, 5, 12matbas2d 21128 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) ∈ (Base‘(𝑁 Mat 𝑅)))
14 mdetralt2.i . 2 (𝜑𝐼𝑁)
15 mdetralt2.j . 2 (𝜑𝐽𝑁)
16 mdetralt2.ij . 2 (𝜑𝐼𝐽)
17 eqidd 2759 . . . . 5 ((𝜑𝑤𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))))
18 iftrue 4429 . . . . . . 7 (𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
1918ad2antrl 727 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
20 csbeq1a 3821 . . . . . . 7 (𝑗 = 𝑤𝑋 = 𝑤 / 𝑗𝑋)
2120ad2antll 728 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → 𝑋 = 𝑤 / 𝑗𝑋)
2219, 21eqtrd 2793 . . . . 5 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑤 / 𝑗𝑋)
23 eqidd 2759 . . . . 5 (((𝜑𝑤𝑁) ∧ 𝑖 = 𝐼) → 𝑁 = 𝑁)
2414adantr 484 . . . . 5 ((𝜑𝑤𝑁) → 𝐼𝑁)
25 simpr 488 . . . . 5 ((𝜑𝑤𝑁) → 𝑤𝑁)
26 nfv 1915 . . . . . . 7 𝑗(𝜑𝑤𝑁)
27 nfcsb1v 3831 . . . . . . . 8 𝑗𝑤 / 𝑗𝑋
2827nfel1 2935 . . . . . . 7 𝑗𝑤 / 𝑗𝑋𝐾
2926, 28nfim 1897 . . . . . 6 𝑗((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)
30 eleq1w 2834 . . . . . . . 8 (𝑗 = 𝑤 → (𝑗𝑁𝑤𝑁))
3130anbi2d 631 . . . . . . 7 (𝑗 = 𝑤 → ((𝜑𝑗𝑁) ↔ (𝜑𝑤𝑁)))
3220eleq1d 2836 . . . . . . 7 (𝑗 = 𝑤 → (𝑋𝐾𝑤 / 𝑗𝑋𝐾))
3331, 32imbi12d 348 . . . . . 6 (𝑗 = 𝑤 → (((𝜑𝑗𝑁) → 𝑋𝐾) ↔ ((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)))
3429, 33, 8chvarfv 2240 . . . . 5 ((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)
35 nfv 1915 . . . . 5 𝑖(𝜑𝑤𝑁)
36 nfcv 2919 . . . . 5 𝑗𝐼
37 nfcv 2919 . . . . 5 𝑖𝑤
38 nfcv 2919 . . . . 5 𝑖𝑤 / 𝑗𝑋
3917, 22, 23, 24, 25, 34, 35, 26, 36, 37, 38, 27ovmpodxf 7300 . . . 4 ((𝜑𝑤𝑁) → (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = 𝑤 / 𝑗𝑋)
40 iftrue 4429 . . . . . . . . 9 (𝑖 = 𝐽 → if(𝑖 = 𝐽, 𝑋, 𝑌) = 𝑋)
4140ifeq2d 4443 . . . . . . . 8 (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = if(𝑖 = 𝐼, 𝑋, 𝑋))
42 ifid 4463 . . . . . . . 8 if(𝑖 = 𝐼, 𝑋, 𝑋) = 𝑋
4341, 42eqtrdi 2809 . . . . . . 7 (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
4443ad2antrl 727 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
4520ad2antll 728 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → 𝑋 = 𝑤 / 𝑗𝑋)
4644, 45eqtrd 2793 . . . . 5 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑤 / 𝑗𝑋)
47 eqidd 2759 . . . . 5 (((𝜑𝑤𝑁) ∧ 𝑖 = 𝐽) → 𝑁 = 𝑁)
4815adantr 484 . . . . 5 ((𝜑𝑤𝑁) → 𝐽𝑁)
49 nfcv 2919 . . . . 5 𝑗𝐽
5017, 46, 47, 48, 25, 34, 35, 26, 49, 37, 38, 27ovmpodxf 7300 . . . 4 ((𝜑𝑤𝑁) → (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = 𝑤 / 𝑗𝑋)
5139, 50eqtr4d 2796 . . 3 ((𝜑𝑤𝑁) → (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤))
5251ralrimiva 3113 . 2 (𝜑 → ∀𝑤𝑁 (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤))
531, 2, 3, 4, 5, 13, 14, 15, 16, 52mdetralt 21313 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  csb 3807  ifcif 4423  cfv 6339  (class class class)co 7155  cmpo 7157  Fincfn 8532  Basecbs 16546  0gc0g 16776  CRingccrg 19371   Mat cmat 21112   maDet cmdat 21289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-addf 10659  ax-mulf 10660
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-tpos 7907  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-sup 8944  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-xnn0 12012  df-z 12026  df-dec 12143  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-seq 13424  df-exp 13485  df-hash 13746  df-word 13919  df-lsw 13967  df-concat 13975  df-s1 14002  df-substr 14055  df-pfx 14085  df-splice 14164  df-reverse 14173  df-s2 14262  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-hom 16652  df-cco 16653  df-0g 16778  df-gsum 16779  df-prds 16784  df-pws 16786  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-mhm 18027  df-submnd 18028  df-efmnd 18105  df-grp 18177  df-minusg 18178  df-mulg 18297  df-subg 18348  df-ghm 18428  df-gim 18471  df-cntz 18519  df-oppg 18546  df-symg 18568  df-pmtr 18642  df-psgn 18691  df-evpm 18692  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-cring 19373  df-oppr 19449  df-dvdsr 19467  df-unit 19468  df-invr 19498  df-dvr 19509  df-rnghom 19543  df-drng 19577  df-subrg 19606  df-sra 20017  df-rgmod 20018  df-cnfld 20172  df-zring 20244  df-zrh 20278  df-dsmm 20502  df-frlm 20517  df-mat 21113  df-mdet 21290
This theorem is referenced by:  mdetero  21315  madurid  21349
  Copyright terms: Public domain W3C validator