| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetralt2 | Structured version Visualization version GIF version | ||
| Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetralt2.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdetralt2.k | ⊢ 𝐾 = (Base‘𝑅) |
| mdetralt2.z | ⊢ 0 = (0g‘𝑅) |
| mdetralt2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mdetralt2.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mdetralt2.x | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
| mdetralt2.y | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
| mdetralt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
| mdetralt2.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
| mdetralt2.ij | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| Ref | Expression |
|---|---|
| mdetralt2 | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetralt2.d | . 2 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 2 | eqid 2729 | . 2 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
| 4 | mdetralt2.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 5 | mdetralt2.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 6 | mdetralt2.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 7 | mdetralt2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 8 | mdetralt2.x | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
| 9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
| 10 | mdetralt2.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) | |
| 11 | 9, 10 | ifcld 4535 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐽, 𝑋, 𝑌) ∈ 𝐾) |
| 12 | 9, 11 | ifcld 4535 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) ∈ 𝐾) |
| 13 | 2, 6, 3, 7, 5, 12 | matbas2d 22310 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 14 | mdetralt2.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
| 15 | mdetralt2.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
| 16 | mdetralt2.ij | . 2 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 17 | eqidd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) | |
| 18 | iftrue 4494 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) | |
| 19 | 18 | ad2antrl 728 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
| 20 | csbeq1a 3876 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) | |
| 21 | 20 | ad2antll 729 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
| 22 | 19, 21 | eqtrd 2764 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
| 23 | eqidd 2730 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐼) → 𝑁 = 𝑁) | |
| 24 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
| 25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝑤 ∈ 𝑁) | |
| 26 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ 𝑁) | |
| 27 | nfcsb1v 3886 | . . . . . . . 8 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 | |
| 28 | 27 | nfel1 2908 | . . . . . . 7 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾 |
| 29 | 26, 28 | nfim 1896 | . . . . . 6 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
| 30 | eleq1w 2811 | . . . . . . . 8 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁)) | |
| 31 | 30 | anbi2d 630 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ 𝑁) ↔ (𝜑 ∧ 𝑤 ∈ 𝑁))) |
| 32 | 20 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑋 ∈ 𝐾 ↔ ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾)) |
| 33 | 31, 32 | imbi12d 344 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) ↔ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾))) |
| 34 | 29, 33, 8 | chvarfv 2241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
| 35 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑤 ∈ 𝑁) | |
| 36 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑗𝐼 | |
| 37 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑖𝑤 | |
| 38 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑖⦋𝑤 / 𝑗⦌𝑋 | |
| 39 | 17, 22, 23, 24, 25, 34, 35, 26, 36, 37, 38, 27 | ovmpodxf 7539 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
| 40 | iftrue 4494 | . . . . . . . . 9 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐽, 𝑋, 𝑌) = 𝑋) | |
| 41 | 40 | ifeq2d 4509 | . . . . . . . 8 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = if(𝑖 = 𝐼, 𝑋, 𝑋)) |
| 42 | ifid 4529 | . . . . . . . 8 ⊢ if(𝑖 = 𝐼, 𝑋, 𝑋) = 𝑋 | |
| 43 | 41, 42 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
| 44 | 43 | ad2antrl 728 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
| 45 | 20 | ad2antll 729 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
| 46 | 44, 45 | eqtrd 2764 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
| 47 | eqidd 2730 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐽) → 𝑁 = 𝑁) | |
| 48 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
| 49 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑗𝐽 | |
| 50 | 17, 46, 47, 48, 25, 34, 35, 26, 49, 37, 38, 27 | ovmpodxf 7539 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
| 51 | 39, 50 | eqtr4d 2767 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
| 52 | 51 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑁 (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
| 53 | 1, 2, 3, 4, 5, 13, 14, 15, 16, 52 | mdetralt 22495 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⦋csb 3862 ifcif 4488 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Fincfn 8918 Basecbs 17179 0gc0g 17402 CRingccrg 20143 Mat cmat 22294 maDet cmdat 22471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-symg 19300 df-pmtr 19372 df-psgn 19421 df-evpm 19422 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-dsmm 21641 df-frlm 21656 df-mat 22295 df-mdet 22472 |
| This theorem is referenced by: mdetero 22497 madurid 22531 |
| Copyright terms: Public domain | W3C validator |