![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetralt2 | Structured version Visualization version GIF version |
Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mdetralt2.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetralt2.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetralt2.z | ⊢ 0 = (0g‘𝑅) |
mdetralt2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetralt2.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetralt2.x | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
mdetralt2.y | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
mdetralt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mdetralt2.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
mdetralt2.ij | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
Ref | Expression |
---|---|
mdetralt2 | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetralt2.d | . 2 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | eqid 2740 | . 2 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
3 | eqid 2740 | . 2 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
4 | mdetralt2.z | . 2 ⊢ 0 = (0g‘𝑅) | |
5 | mdetralt2.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
6 | mdetralt2.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
7 | mdetralt2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
8 | mdetralt2.x | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
10 | mdetralt2.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) | |
11 | 9, 10 | ifcld 4594 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐽, 𝑋, 𝑌) ∈ 𝐾) |
12 | 9, 11 | ifcld 4594 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) ∈ 𝐾) |
13 | 2, 6, 3, 7, 5, 12 | matbas2d 22450 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) ∈ (Base‘(𝑁 Mat 𝑅))) |
14 | mdetralt2.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
15 | mdetralt2.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
16 | mdetralt2.ij | . 2 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
17 | eqidd 2741 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) | |
18 | iftrue 4554 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) | |
19 | 18 | ad2antrl 727 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
20 | csbeq1a 3935 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) | |
21 | 20 | ad2antll 728 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
22 | 19, 21 | eqtrd 2780 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
23 | eqidd 2741 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐼) → 𝑁 = 𝑁) | |
24 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝑤 ∈ 𝑁) | |
26 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ 𝑁) | |
27 | nfcsb1v 3946 | . . . . . . . 8 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 | |
28 | 27 | nfel1 2925 | . . . . . . 7 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾 |
29 | 26, 28 | nfim 1895 | . . . . . 6 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
30 | eleq1w 2827 | . . . . . . . 8 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁)) | |
31 | 30 | anbi2d 629 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ 𝑁) ↔ (𝜑 ∧ 𝑤 ∈ 𝑁))) |
32 | 20 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑋 ∈ 𝐾 ↔ ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾)) |
33 | 31, 32 | imbi12d 344 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) ↔ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾))) |
34 | 29, 33, 8 | chvarfv 2241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
35 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑤 ∈ 𝑁) | |
36 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑗𝐼 | |
37 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑖𝑤 | |
38 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑖⦋𝑤 / 𝑗⦌𝑋 | |
39 | 17, 22, 23, 24, 25, 34, 35, 26, 36, 37, 38, 27 | ovmpodxf 7600 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
40 | iftrue 4554 | . . . . . . . . 9 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐽, 𝑋, 𝑌) = 𝑋) | |
41 | 40 | ifeq2d 4568 | . . . . . . . 8 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = if(𝑖 = 𝐼, 𝑋, 𝑋)) |
42 | ifid 4588 | . . . . . . . 8 ⊢ if(𝑖 = 𝐼, 𝑋, 𝑋) = 𝑋 | |
43 | 41, 42 | eqtrdi 2796 | . . . . . . 7 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
44 | 43 | ad2antrl 727 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
45 | 20 | ad2antll 728 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
46 | 44, 45 | eqtrd 2780 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
47 | eqidd 2741 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐽) → 𝑁 = 𝑁) | |
48 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
49 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑗𝐽 | |
50 | 17, 46, 47, 48, 25, 34, 35, 26, 49, 37, 38, 27 | ovmpodxf 7600 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
51 | 39, 50 | eqtr4d 2783 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
52 | 51 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑁 (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
53 | 1, 2, 3, 4, 5, 13, 14, 15, 16, 52 | mdetralt 22635 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⦋csb 3921 ifcif 4548 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Fincfn 9003 Basecbs 17258 0gc0g 17499 CRingccrg 20261 Mat cmat 22432 maDet cmdat 22611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-reverse 14807 df-s2 14897 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-ghm 19253 df-gim 19299 df-cntz 19357 df-oppg 19386 df-symg 19411 df-pmtr 19484 df-psgn 19533 df-evpm 19534 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-sra 21195 df-rgmod 21196 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-dsmm 21775 df-frlm 21790 df-mat 22433 df-mdet 22612 |
This theorem is referenced by: mdetero 22637 madurid 22671 |
Copyright terms: Public domain | W3C validator |