| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetralt2 | Structured version Visualization version GIF version | ||
| Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetralt2.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdetralt2.k | ⊢ 𝐾 = (Base‘𝑅) |
| mdetralt2.z | ⊢ 0 = (0g‘𝑅) |
| mdetralt2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mdetralt2.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mdetralt2.x | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
| mdetralt2.y | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) |
| mdetralt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
| mdetralt2.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
| mdetralt2.ij | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| Ref | Expression |
|---|---|
| mdetralt2 | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetralt2.d | . 2 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 2 | eqid 2736 | . 2 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
| 3 | eqid 2736 | . 2 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
| 4 | mdetralt2.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 5 | mdetralt2.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 6 | mdetralt2.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 7 | mdetralt2.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 8 | mdetralt2.x | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
| 9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
| 10 | mdetralt2.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐾) | |
| 11 | 9, 10 | ifcld 4552 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐽, 𝑋, 𝑌) ∈ 𝐾) |
| 12 | 9, 11 | ifcld 4552 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) ∈ 𝐾) |
| 13 | 2, 6, 3, 7, 5, 12 | matbas2d 22366 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 14 | mdetralt2.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
| 15 | mdetralt2.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
| 16 | mdetralt2.ij | . 2 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 17 | eqidd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) | |
| 18 | iftrue 4511 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) | |
| 19 | 18 | ad2antrl 728 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
| 20 | csbeq1a 3893 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) | |
| 21 | 20 | ad2antll 729 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
| 22 | 19, 21 | eqtrd 2771 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
| 23 | eqidd 2737 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐼) → 𝑁 = 𝑁) | |
| 24 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
| 25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝑤 ∈ 𝑁) | |
| 26 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑤 ∈ 𝑁) | |
| 27 | nfcsb1v 3903 | . . . . . . . 8 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 | |
| 28 | 27 | nfel1 2916 | . . . . . . 7 ⊢ Ⅎ𝑗⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾 |
| 29 | 26, 28 | nfim 1896 | . . . . . 6 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
| 30 | eleq1w 2818 | . . . . . . . 8 ⊢ (𝑗 = 𝑤 → (𝑗 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁)) | |
| 31 | 30 | anbi2d 630 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ 𝑁) ↔ (𝜑 ∧ 𝑤 ∈ 𝑁))) |
| 32 | 20 | eleq1d 2820 | . . . . . . 7 ⊢ (𝑗 = 𝑤 → (𝑋 ∈ 𝐾 ↔ ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾)) |
| 33 | 31, 32 | imbi12d 344 | . . . . . 6 ⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) ↔ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾))) |
| 34 | 29, 33, 8 | chvarfv 2241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑗⦌𝑋 ∈ 𝐾) |
| 35 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑤 ∈ 𝑁) | |
| 36 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑗𝐼 | |
| 37 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑖𝑤 | |
| 38 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑖⦋𝑤 / 𝑗⦌𝑋 | |
| 39 | 17, 22, 23, 24, 25, 34, 35, 26, 36, 37, 38, 27 | ovmpodxf 7562 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
| 40 | iftrue 4511 | . . . . . . . . 9 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐽, 𝑋, 𝑌) = 𝑋) | |
| 41 | 40 | ifeq2d 4526 | . . . . . . . 8 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = if(𝑖 = 𝐼, 𝑋, 𝑋)) |
| 42 | ifid 4546 | . . . . . . . 8 ⊢ if(𝑖 = 𝐼, 𝑋, 𝑋) = 𝑋 | |
| 43 | 41, 42 | eqtrdi 2787 | . . . . . . 7 ⊢ (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
| 44 | 43 | ad2antrl 728 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋) |
| 45 | 20 | ad2antll 729 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → 𝑋 = ⦋𝑤 / 𝑗⦌𝑋) |
| 46 | 44, 45 | eqtrd 2771 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ (𝑖 = 𝐽 ∧ 𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = ⦋𝑤 / 𝑗⦌𝑋) |
| 47 | eqidd 2737 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝑁) ∧ 𝑖 = 𝐽) → 𝑁 = 𝑁) | |
| 48 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
| 49 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑗𝐽 | |
| 50 | 17, 46, 47, 48, 25, 34, 35, 26, 49, 37, 38, 27 | ovmpodxf 7562 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = ⦋𝑤 / 𝑗⦌𝑋) |
| 51 | 39, 50 | eqtr4d 2774 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑁) → (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
| 52 | 51 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑁 (𝐼(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤)) |
| 53 | 1, 2, 3, 4, 5, 13, 14, 15, 16, 52 | mdetralt 22551 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⦋csb 3879 ifcif 4505 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 Fincfn 8964 Basecbs 17233 0gc0g 17458 CRingccrg 20199 Mat cmat 22350 maDet cmdat 22527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-word 14537 df-lsw 14586 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-splice 14773 df-reverse 14782 df-s2 14872 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-efmnd 18852 df-grp 18924 df-minusg 18925 df-mulg 19056 df-subg 19111 df-ghm 19201 df-gim 19247 df-cntz 19305 df-oppg 19334 df-symg 19356 df-pmtr 19428 df-psgn 19477 df-evpm 19478 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-drng 20696 df-sra 21136 df-rgmod 21137 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-dsmm 21697 df-frlm 21712 df-mat 22351 df-mdet 22528 |
| This theorem is referenced by: mdetero 22553 madurid 22587 |
| Copyright terms: Public domain | W3C validator |