![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fczpsrbag | Structured version Visualization version GIF version |
Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
fczpsrbag | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid 4422 | . . . . 5 ⊢ if(𝑥 = 𝑛, 0, 0) = 0 | |
2 | 1 | eqcomi 2803 | . . . 4 ⊢ 0 = if(𝑥 = 𝑛, 0, 0) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 0 = if(𝑥 = 𝑛, 0, 0)) |
4 | 3 | mpteq2dv 5059 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑛, 0, 0))) |
5 | 0nn0 11762 | . . 3 ⊢ 0 ∈ ℕ0 | |
6 | psrbag.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
7 | 6 | snifpsrbag 19834 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 0 ∈ ℕ0) → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑛, 0, 0)) ∈ 𝐷) |
8 | 5, 7 | mpan2 687 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑛, 0, 0)) ∈ 𝐷) |
9 | 4, 8 | eqeltrd 2882 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2080 {crab 3108 ifcif 4383 ↦ cmpt 5043 ◡ccnv 5445 “ cima 5449 (class class class)co 7019 ↑𝑚 cmap 8259 Fincfn 8360 0cc0 10386 ℕcn 11488 ℕ0cn0 11747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-supp 7685 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-er 8142 df-map 8261 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-fsupp 8683 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-nn 11489 df-n0 11748 |
This theorem is referenced by: psrbas 19846 psrlidm 19871 psrridm 19872 |
Copyright terms: Public domain | W3C validator |