MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fczpsrbag Structured version   Visualization version   GIF version

Theorem fczpsrbag 21482
Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
fczpsrbag (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
Distinct variable groups:   𝑥,𝑓   𝑥,𝑉   𝑓,𝐼,𝑥   𝑥,𝐷
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem fczpsrbag
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ifid 4568 . . . . 5 if(𝑥 = 𝑛, 0, 0) = 0
21eqcomi 2741 . . . 4 0 = if(𝑥 = 𝑛, 0, 0)
32a1i 11 . . 3 (𝐼𝑉 → 0 = if(𝑥 = 𝑛, 0, 0))
43mpteq2dv 5250 . 2 (𝐼𝑉 → (𝑥𝐼 ↦ 0) = (𝑥𝐼 ↦ if(𝑥 = 𝑛, 0, 0)))
5 0nn0 12489 . . 3 0 ∈ ℕ0
6 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
76snifpsrbag 21481 . . 3 ((𝐼𝑉 ∧ 0 ∈ ℕ0) → (𝑥𝐼 ↦ if(𝑥 = 𝑛, 0, 0)) ∈ 𝐷)
85, 7mpan2 689 . 2 (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝑛, 0, 0)) ∈ 𝐷)
94, 8eqeltrd 2833 1 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {crab 3432  ifcif 4528  cmpt 5231  ccnv 5675  cima 5679  (class class class)co 7411  m cmap 8822  Fincfn 8941  0cc0 11112  cn 12214  0cn0 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-nn 12215  df-n0 12475
This theorem is referenced by:  psrbas  21503  psrlidm  21529  psrridm  21530
  Copyright terms: Public domain W3C validator