![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1arithlem4 | Structured version Visualization version GIF version |
Description: Lemma for 1arith 16974. (Contributed by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
1arith.1 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
1arithlem4.2 | ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) |
1arithlem4.3 | ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) |
1arithlem4.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
1arithlem4.5 | ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) |
Ref | Expression |
---|---|
1arithlem4 | ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arithlem4.2 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) | |
2 | 1arithlem4.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) | |
3 | 2 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℙ) → (𝐹‘𝑦) ∈ ℕ0) |
4 | 3 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈ ℕ0) |
5 | 1, 4 | pcmptcl 16938 | . . . 4 ⊢ (𝜑 → (𝐺:ℕ⟶ℕ ∧ seq1( · , 𝐺):ℕ⟶ℕ)) |
6 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → seq1( · , 𝐺):ℕ⟶ℕ) |
7 | 1arithlem4.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 6, 7 | ffvelcdmd 7119 | . 2 ⊢ (𝜑 → (seq1( · , 𝐺)‘𝑁) ∈ ℕ) |
9 | 1arith.1 | . . . . . . 7 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | |
10 | 9 | 1arithlem2 16971 | . . . . . 6 ⊢ (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) |
11 | 8, 10 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) |
12 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈ ℕ0) |
13 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℕ) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ) | |
15 | fveq2 6920 | . . . . . 6 ⊢ (𝑦 = 𝑞 → (𝐹‘𝑦) = (𝐹‘𝑞)) | |
16 | 1, 12, 13, 14, 15 | pcmpt 16939 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) |
17 | 13 | nnred 12308 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℝ) |
18 | prmz 16722 | . . . . . . . 8 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℤ) | |
19 | 18 | zred 12747 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℝ) |
20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℝ) |
21 | 1arithlem4.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) | |
22 | 21 | anassrs 467 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → (𝐹‘𝑞) = 0) |
23 | 22 | ifeq2d 4568 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) |
24 | ifid 4588 | . . . . . . 7 ⊢ if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = (𝐹‘𝑞) | |
25 | 23, 24 | eqtr3di 2795 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
26 | iftrue 4554 | . . . . . . 7 ⊢ (𝑞 ≤ 𝑁 → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) | |
27 | 26 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ≤ 𝑁) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
28 | 17, 20, 25, 27 | lecasei 11396 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
29 | 11, 16, 28 | 3eqtrrd 2785 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) |
30 | 29 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) |
31 | 9 | 1arithlem3 16972 | . . . . 5 ⊢ ((seq1( · , 𝐺)‘𝑁) ∈ ℕ → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) |
32 | 8, 31 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) |
33 | ffn 6747 | . . . . 5 ⊢ (𝐹:ℙ⟶ℕ0 → 𝐹 Fn ℙ) | |
34 | ffn 6747 | . . . . 5 ⊢ ((𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0 → (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) | |
35 | eqfnfv 7064 | . . . . 5 ⊢ ((𝐹 Fn ℙ ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) | |
36 | 33, 34, 35 | syl2an 595 | . . . 4 ⊢ ((𝐹:ℙ⟶ℕ0 ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) |
37 | 2, 32, 36 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) |
38 | 30, 37 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) |
39 | fveq2 6920 | . . 3 ⊢ (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝑀‘𝑥) = (𝑀‘(seq1( · , 𝐺)‘𝑁))) | |
40 | 39 | rspceeqv 3658 | . 2 ⊢ (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
41 | 8, 38, 40 | syl2anc 583 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 ≤ cle 11325 ℕcn 12293 ℕ0cn0 12553 seqcseq 14052 ↑cexp 14112 ℙcprime 16718 pCnt cpc 16883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-prm 16719 df-pc 16884 |
This theorem is referenced by: 1arith 16974 |
Copyright terms: Public domain | W3C validator |