![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1arithlem4 | Structured version Visualization version GIF version |
Description: Lemma for 1arith 16961. (Contributed by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
1arith.1 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
1arithlem4.2 | ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) |
1arithlem4.3 | ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) |
1arithlem4.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
1arithlem4.5 | ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) |
Ref | Expression |
---|---|
1arithlem4 | ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arithlem4.2 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) | |
2 | 1arithlem4.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) | |
3 | 2 | ffvelcdmda 7104 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℙ) → (𝐹‘𝑦) ∈ ℕ0) |
4 | 3 | ralrimiva 3144 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈ ℕ0) |
5 | 1, 4 | pcmptcl 16925 | . . . 4 ⊢ (𝜑 → (𝐺:ℕ⟶ℕ ∧ seq1( · , 𝐺):ℕ⟶ℕ)) |
6 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → seq1( · , 𝐺):ℕ⟶ℕ) |
7 | 1arithlem4.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 6, 7 | ffvelcdmd 7105 | . 2 ⊢ (𝜑 → (seq1( · , 𝐺)‘𝑁) ∈ ℕ) |
9 | 1arith.1 | . . . . . . 7 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | |
10 | 9 | 1arithlem2 16958 | . . . . . 6 ⊢ (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) |
11 | 8, 10 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) |
12 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈ ℕ0) |
13 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℕ) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ) | |
15 | fveq2 6907 | . . . . . 6 ⊢ (𝑦 = 𝑞 → (𝐹‘𝑦) = (𝐹‘𝑞)) | |
16 | 1, 12, 13, 14, 15 | pcmpt 16926 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) |
17 | 13 | nnred 12279 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℝ) |
18 | prmz 16709 | . . . . . . . 8 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℤ) | |
19 | 18 | zred 12720 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℝ) |
20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℝ) |
21 | 1arithlem4.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) | |
22 | 21 | anassrs 467 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → (𝐹‘𝑞) = 0) |
23 | 22 | ifeq2d 4551 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) |
24 | ifid 4571 | . . . . . . 7 ⊢ if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = (𝐹‘𝑞) | |
25 | 23, 24 | eqtr3di 2790 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
26 | iftrue 4537 | . . . . . . 7 ⊢ (𝑞 ≤ 𝑁 → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) | |
27 | 26 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ≤ 𝑁) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
28 | 17, 20, 25, 27 | lecasei 11365 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
29 | 11, 16, 28 | 3eqtrrd 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) |
30 | 29 | ralrimiva 3144 | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) |
31 | 9 | 1arithlem3 16959 | . . . . 5 ⊢ ((seq1( · , 𝐺)‘𝑁) ∈ ℕ → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) |
32 | 8, 31 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) |
33 | ffn 6737 | . . . . 5 ⊢ (𝐹:ℙ⟶ℕ0 → 𝐹 Fn ℙ) | |
34 | ffn 6737 | . . . . 5 ⊢ ((𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0 → (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) | |
35 | eqfnfv 7051 | . . . . 5 ⊢ ((𝐹 Fn ℙ ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) | |
36 | 33, 34, 35 | syl2an 596 | . . . 4 ⊢ ((𝐹:ℙ⟶ℕ0 ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) |
37 | 2, 32, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) |
38 | 30, 37 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) |
39 | fveq2 6907 | . . 3 ⊢ (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝑀‘𝑥) = (𝑀‘(seq1( · , 𝐺)‘𝑁))) | |
40 | 39 | rspceeqv 3645 | . 2 ⊢ (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
41 | 8, 38, 40 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 ≤ cle 11294 ℕcn 12264 ℕ0cn0 12524 seqcseq 14039 ↑cexp 14099 ℙcprime 16705 pCnt cpc 16870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-fz 13545 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 df-pc 16871 |
This theorem is referenced by: 1arith 16961 |
Copyright terms: Public domain | W3C validator |