MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arithlem4 Structured version   Visualization version   GIF version

Theorem 1arithlem4 16108
Description: Lemma for 1arith 16109. (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arithlem4.2 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹𝑦)), 1))
1arithlem4.3 (𝜑𝐹:ℙ⟶ℕ0)
1arithlem4.4 (𝜑𝑁 ∈ ℕ)
1arithlem4.5 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁𝑞)) → (𝐹𝑞) = 0)
Assertion
Ref Expression
1arithlem4 (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
Distinct variable groups:   𝑛,𝑝,𝑞,𝑥,𝑦   𝐹,𝑞,𝑥,𝑦   𝑀,𝑞,𝑥,𝑦   𝜑,𝑞,𝑦   𝑛,𝐺,𝑝,𝑞,𝑥   𝑛,𝑁,𝑝,𝑞,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑝)   𝐹(𝑛,𝑝)   𝐺(𝑦)   𝑀(𝑛,𝑝)   𝑁(𝑦)

Proof of Theorem 1arithlem4
StepHypRef Expression
1 1arithlem4.2 . . . . 5 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹𝑦)), 1))
2 1arithlem4.3 . . . . . . 7 (𝜑𝐹:ℙ⟶ℕ0)
32ffvelrnda 6670 . . . . . 6 ((𝜑𝑦 ∈ ℙ) → (𝐹𝑦) ∈ ℕ0)
43ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑦 ∈ ℙ (𝐹𝑦) ∈ ℕ0)
51, 4pcmptcl 16073 . . . 4 (𝜑 → (𝐺:ℕ⟶ℕ ∧ seq1( · , 𝐺):ℕ⟶ℕ))
65simprd 488 . . 3 (𝜑 → seq1( · , 𝐺):ℕ⟶ℕ)
7 1arithlem4.4 . . 3 (𝜑𝑁 ∈ ℕ)
86, 7ffvelrnd 6671 . 2 (𝜑 → (seq1( · , 𝐺)‘𝑁) ∈ ℕ)
9 1arith.1 . . . . . . 7 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1091arithlem2 16106 . . . . . 6 (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)))
118, 10sylan 572 . . . . 5 ((𝜑𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)))
124adantr 473 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → ∀𝑦 ∈ ℙ (𝐹𝑦) ∈ ℕ0)
137adantr 473 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑁 ∈ ℕ)
14 simpr 477 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
15 fveq2 6493 . . . . . 6 (𝑦 = 𝑞 → (𝐹𝑦) = (𝐹𝑞))
161, 12, 13, 14, 15pcmpt 16074 . . . . 5 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)) = if(𝑞𝑁, (𝐹𝑞), 0))
1713nnred 11448 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑁 ∈ ℝ)
18 prmz 15865 . . . . . . . 8 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
1918zred 11893 . . . . . . 7 (𝑞 ∈ ℙ → 𝑞 ∈ ℝ)
2019adantl 474 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℝ)
21 ifid 4383 . . . . . . 7 if(𝑞𝑁, (𝐹𝑞), (𝐹𝑞)) = (𝐹𝑞)
22 1arithlem4.5 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁𝑞)) → (𝐹𝑞) = 0)
2322anassrs 460 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → (𝐹𝑞) = 0)
2423ifeq2d 4363 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → if(𝑞𝑁, (𝐹𝑞), (𝐹𝑞)) = if(𝑞𝑁, (𝐹𝑞), 0))
2521, 24syl5reqr 2823 . . . . . 6 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
26 iftrue 4350 . . . . . . 7 (𝑞𝑁 → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
2726adantl 474 . . . . . 6 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
2817, 20, 25, 27lecasei 10538 . . . . 5 ((𝜑𝑞 ∈ ℙ) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
2911, 16, 283eqtrrd 2813 . . . 4 ((𝜑𝑞 ∈ ℙ) → (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))
3029ralrimiva 3126 . . 3 (𝜑 → ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))
3191arithlem3 16107 . . . . 5 ((seq1( · , 𝐺)‘𝑁) ∈ ℕ → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0)
328, 31syl 17 . . . 4 (𝜑 → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0)
33 ffn 6338 . . . . 5 (𝐹:ℙ⟶ℕ0𝐹 Fn ℙ)
34 ffn 6338 . . . . 5 ((𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0 → (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ)
35 eqfnfv 6621 . . . . 5 ((𝐹 Fn ℙ ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
3633, 34, 35syl2an 586 . . . 4 ((𝐹:ℙ⟶ℕ0 ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
372, 32, 36syl2anc 576 . . 3 (𝜑 → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
3830, 37mpbird 249 . 2 (𝜑𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)))
39 fveq2 6493 . . 3 (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝑀𝑥) = (𝑀‘(seq1( · , 𝐺)‘𝑁)))
4039rspceeqv 3547 . 2 (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
418, 38, 40syl2anc 576 1 (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wral 3082  wrex 3083  ifcif 4344   class class class wbr 4923  cmpt 5002   Fn wfn 6177  wf 6178  cfv 6182  (class class class)co 6970  cr 10326  0cc0 10327  1c1 10328   · cmul 10332  cle 10467  cn 11431  0cn0 11700  seqcseq 13177  cexp 13237  cprime 15861   pCnt cpc 16019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-fz 12702  df-fl 12970  df-mod 13046  df-seq 13178  df-exp 13238  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-dvds 15458  df-gcd 15694  df-prm 15862  df-pc 16020
This theorem is referenced by:  1arith  16109
  Copyright terms: Public domain W3C validator