MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arithlem4 Structured version   Visualization version   GIF version

Theorem 1arithlem4 16835
Description: Lemma for 1arith 16836. (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arithlem4.2 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹𝑦)), 1))
1arithlem4.3 (𝜑𝐹:ℙ⟶ℕ0)
1arithlem4.4 (𝜑𝑁 ∈ ℕ)
1arithlem4.5 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁𝑞)) → (𝐹𝑞) = 0)
Assertion
Ref Expression
1arithlem4 (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
Distinct variable groups:   𝑛,𝑝,𝑞,𝑥,𝑦   𝐹,𝑞,𝑥,𝑦   𝑀,𝑞,𝑥,𝑦   𝜑,𝑞,𝑦   𝑛,𝐺,𝑝,𝑞,𝑥   𝑛,𝑁,𝑝,𝑞,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑝)   𝐹(𝑛,𝑝)   𝐺(𝑦)   𝑀(𝑛,𝑝)   𝑁(𝑦)

Proof of Theorem 1arithlem4
StepHypRef Expression
1 1arithlem4.2 . . . . 5 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹𝑦)), 1))
2 1arithlem4.3 . . . . . . 7 (𝜑𝐹:ℙ⟶ℕ0)
32ffvelcdmda 7017 . . . . . 6 ((𝜑𝑦 ∈ ℙ) → (𝐹𝑦) ∈ ℕ0)
43ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑦 ∈ ℙ (𝐹𝑦) ∈ ℕ0)
51, 4pcmptcl 16800 . . . 4 (𝜑 → (𝐺:ℕ⟶ℕ ∧ seq1( · , 𝐺):ℕ⟶ℕ))
65simprd 495 . . 3 (𝜑 → seq1( · , 𝐺):ℕ⟶ℕ)
7 1arithlem4.4 . . 3 (𝜑𝑁 ∈ ℕ)
86, 7ffvelcdmd 7018 . 2 (𝜑 → (seq1( · , 𝐺)‘𝑁) ∈ ℕ)
9 1arith.1 . . . . . . 7 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1091arithlem2 16833 . . . . . 6 (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)))
118, 10sylan 580 . . . . 5 ((𝜑𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)))
124adantr 480 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → ∀𝑦 ∈ ℙ (𝐹𝑦) ∈ ℕ0)
137adantr 480 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑁 ∈ ℕ)
14 simpr 484 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
15 fveq2 6822 . . . . . 6 (𝑦 = 𝑞 → (𝐹𝑦) = (𝐹𝑞))
161, 12, 13, 14, 15pcmpt 16801 . . . . 5 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)) = if(𝑞𝑁, (𝐹𝑞), 0))
1713nnred 12137 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑁 ∈ ℝ)
18 prmz 16583 . . . . . . . 8 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
1918zred 12574 . . . . . . 7 (𝑞 ∈ ℙ → 𝑞 ∈ ℝ)
2019adantl 481 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℝ)
21 1arithlem4.5 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁𝑞)) → (𝐹𝑞) = 0)
2221anassrs 467 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → (𝐹𝑞) = 0)
2322ifeq2d 4496 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → if(𝑞𝑁, (𝐹𝑞), (𝐹𝑞)) = if(𝑞𝑁, (𝐹𝑞), 0))
24 ifid 4516 . . . . . . 7 if(𝑞𝑁, (𝐹𝑞), (𝐹𝑞)) = (𝐹𝑞)
2523, 24eqtr3di 2781 . . . . . 6 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
26 iftrue 4481 . . . . . . 7 (𝑞𝑁 → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
2726adantl 481 . . . . . 6 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
2817, 20, 25, 27lecasei 11216 . . . . 5 ((𝜑𝑞 ∈ ℙ) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
2911, 16, 283eqtrrd 2771 . . . 4 ((𝜑𝑞 ∈ ℙ) → (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))
3029ralrimiva 3124 . . 3 (𝜑 → ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))
3191arithlem3 16834 . . . . 5 ((seq1( · , 𝐺)‘𝑁) ∈ ℕ → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0)
328, 31syl 17 . . . 4 (𝜑 → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0)
33 ffn 6651 . . . . 5 (𝐹:ℙ⟶ℕ0𝐹 Fn ℙ)
34 ffn 6651 . . . . 5 ((𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0 → (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ)
35 eqfnfv 6964 . . . . 5 ((𝐹 Fn ℙ ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
3633, 34, 35syl2an 596 . . . 4 ((𝐹:ℙ⟶ℕ0 ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
372, 32, 36syl2anc 584 . . 3 (𝜑 → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
3830, 37mpbird 257 . 2 (𝜑𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)))
39 fveq2 6822 . . 3 (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝑀𝑥) = (𝑀‘(seq1( · , 𝐺)‘𝑁)))
4039rspceeqv 3600 . 2 (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
418, 38, 40syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ifcif 4475   class class class wbr 5091  cmpt 5172   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   · cmul 11008  cle 11144  cn 12122  0cn0 12378  seqcseq 13905  cexp 13965  cprime 16579   pCnt cpc 16745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-fz 13405  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-gcd 16403  df-prm 16580  df-pc 16746
This theorem is referenced by:  1arith  16836
  Copyright terms: Public domain W3C validator