![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1arithlem4 | Structured version Visualization version GIF version |
Description: Lemma for 1arith 16799. (Contributed by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
1arith.1 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
1arithlem4.2 | ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) |
1arithlem4.3 | ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) |
1arithlem4.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
1arithlem4.5 | ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) |
Ref | Expression |
---|---|
1arithlem4 | ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arithlem4.2 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) | |
2 | 1arithlem4.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) | |
3 | 2 | ffvelcdmda 7035 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℙ) → (𝐹‘𝑦) ∈ ℕ0) |
4 | 3 | ralrimiva 3143 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈ ℕ0) |
5 | 1, 4 | pcmptcl 16763 | . . . 4 ⊢ (𝜑 → (𝐺:ℕ⟶ℕ ∧ seq1( · , 𝐺):ℕ⟶ℕ)) |
6 | 5 | simprd 496 | . . 3 ⊢ (𝜑 → seq1( · , 𝐺):ℕ⟶ℕ) |
7 | 1arithlem4.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 6, 7 | ffvelcdmd 7036 | . 2 ⊢ (𝜑 → (seq1( · , 𝐺)‘𝑁) ∈ ℕ) |
9 | 1arith.1 | . . . . . . 7 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | |
10 | 9 | 1arithlem2 16796 | . . . . . 6 ⊢ (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) |
11 | 8, 10 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) |
12 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈ ℕ0) |
13 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℕ) |
14 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ) | |
15 | fveq2 6842 | . . . . . 6 ⊢ (𝑦 = 𝑞 → (𝐹‘𝑦) = (𝐹‘𝑞)) | |
16 | 1, 12, 13, 14, 15 | pcmpt 16764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) |
17 | 13 | nnred 12168 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℝ) |
18 | prmz 16551 | . . . . . . . 8 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℤ) | |
19 | 18 | zred 12607 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℝ) |
20 | 19 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℝ) |
21 | 1arithlem4.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) | |
22 | 21 | anassrs 468 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → (𝐹‘𝑞) = 0) |
23 | 22 | ifeq2d 4506 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) |
24 | ifid 4526 | . . . . . . 7 ⊢ if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = (𝐹‘𝑞) | |
25 | 23, 24 | eqtr3di 2791 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
26 | iftrue 4492 | . . . . . . 7 ⊢ (𝑞 ≤ 𝑁 → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) | |
27 | 26 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ≤ 𝑁) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
28 | 17, 20, 25, 27 | lecasei 11261 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
29 | 11, 16, 28 | 3eqtrrd 2781 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) |
30 | 29 | ralrimiva 3143 | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) |
31 | 9 | 1arithlem3 16797 | . . . . 5 ⊢ ((seq1( · , 𝐺)‘𝑁) ∈ ℕ → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) |
32 | 8, 31 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) |
33 | ffn 6668 | . . . . 5 ⊢ (𝐹:ℙ⟶ℕ0 → 𝐹 Fn ℙ) | |
34 | ffn 6668 | . . . . 5 ⊢ ((𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0 → (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) | |
35 | eqfnfv 6982 | . . . . 5 ⊢ ((𝐹 Fn ℙ ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) | |
36 | 33, 34, 35 | syl2an 596 | . . . 4 ⊢ ((𝐹:ℙ⟶ℕ0 ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) |
37 | 2, 32, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) |
38 | 30, 37 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) |
39 | fveq2 6842 | . . 3 ⊢ (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝑀‘𝑥) = (𝑀‘(seq1( · , 𝐺)‘𝑁))) | |
40 | 39 | rspceeqv 3595 | . 2 ⊢ (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
41 | 8, 38, 40 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 ifcif 4486 class class class wbr 5105 ↦ cmpt 5188 Fn wfn 6491 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 0cc0 11051 1c1 11052 · cmul 11056 ≤ cle 11190 ℕcn 12153 ℕ0cn0 12413 seqcseq 13906 ↑cexp 13967 ℙcprime 16547 pCnt cpc 16708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-fz 13425 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-dvds 16137 df-gcd 16375 df-prm 16548 df-pc 16709 |
This theorem is referenced by: 1arith 16799 |
Copyright terms: Public domain | W3C validator |