![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephmul | Structured version Visualization version GIF version |
Description: The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
alephmul | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephgeom 9219 | . . . 4 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
2 | fvex 6447 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ V | |
3 | ssdomg 8269 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)) |
5 | 1, 4 | sylbi 209 | . . 3 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘𝐴)) |
6 | alephon 9206 | . . . 4 ⊢ (ℵ‘𝐴) ∈ On | |
7 | onenon 9089 | . . . 4 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐴) ∈ dom card |
9 | 5, 8 | jctil 517 | . 2 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐴))) |
10 | alephgeom 9219 | . . . 4 ⊢ (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵)) | |
11 | fvex 6447 | . . . . . 6 ⊢ (ℵ‘𝐵) ∈ V | |
12 | ssdomg 8269 | . . . . . 6 ⊢ ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)) |
14 | infn0 8492 | . . . . 5 ⊢ (ω ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≠ ∅) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐵) → (ℵ‘𝐵) ≠ ∅) |
16 | 10, 15 | sylbi 209 | . . 3 ⊢ (𝐵 ∈ On → (ℵ‘𝐵) ≠ ∅) |
17 | alephon 9206 | . . . 4 ⊢ (ℵ‘𝐵) ∈ On | |
18 | onenon 9089 | . . . 4 ⊢ ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐵) ∈ dom card |
20 | 16, 19 | jctil 517 | . 2 ⊢ (𝐵 ∈ On → ((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐵) ≠ ∅)) |
21 | infxp 9353 | . 2 ⊢ ((((ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐵) ≠ ∅)) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) | |
22 | 9, 20, 21 | syl2an 591 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ≠ wne 3000 Vcvv 3415 ∪ cun 3797 ⊆ wss 3799 ∅c0 4145 class class class wbr 4874 × cxp 5341 dom cdm 5343 Oncon0 5964 ‘cfv 6124 ωcom 7327 ≈ cen 8220 ≼ cdom 8221 cardccrd 9075 ℵcale 9076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-oi 8685 df-har 8733 df-card 9079 df-aleph 9080 df-cda 9306 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |