MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephmul Structured version   Visualization version   GIF version

Theorem alephmul 10265
Description: The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephmul ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))

Proof of Theorem alephmul
StepHypRef Expression
1 alephgeom 9769 . . . 4 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
2 fvex 6769 . . . . 5 (ℵ‘𝐴) ∈ V
3 ssdomg 8741 . . . . 5 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
42, 3ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
51, 4sylbi 216 . . 3 (𝐴 ∈ On → ω ≼ (ℵ‘𝐴))
6 alephon 9756 . . . 4 (ℵ‘𝐴) ∈ On
7 onenon 9638 . . . 4 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
86, 7ax-mp 5 . . 3 (ℵ‘𝐴) ∈ dom card
95, 8jctil 519 . 2 (𝐴 ∈ On → ((ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)))
10 alephgeom 9769 . . . 4 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
11 fvex 6769 . . . . . 6 (ℵ‘𝐵) ∈ V
12 ssdomg 8741 . . . . . 6 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
1311, 12ax-mp 5 . . . . 5 (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))
14 infn0 9006 . . . . 5 (ω ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≠ ∅)
1513, 14syl 17 . . . 4 (ω ⊆ (ℵ‘𝐵) → (ℵ‘𝐵) ≠ ∅)
1610, 15sylbi 216 . . 3 (𝐵 ∈ On → (ℵ‘𝐵) ≠ ∅)
17 alephon 9756 . . . 4 (ℵ‘𝐵) ∈ On
18 onenon 9638 . . . 4 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
1917, 18ax-mp 5 . . 3 (ℵ‘𝐵) ∈ dom card
2016, 19jctil 519 . 2 (𝐵 ∈ On → ((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐵) ≠ ∅))
21 infxp 9902 . 2 ((((ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐵) ≠ ∅)) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
229, 20, 21syl2an 595 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2942  Vcvv 3422  cun 3881  wss 3883  c0 4253   class class class wbr 5070   × cxp 5578  dom cdm 5580  Oncon0 6251  cfv 6418  ωcom 7687  cen 8688  cdom 8689  cardccrd 9624  cale 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-har 9246  df-dju 9590  df-card 9628  df-aleph 9629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator