| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephmul | Structured version Visualization version GIF version | ||
| Description: The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| alephmul | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephgeom 9968 | . . . 4 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
| 2 | fvex 6830 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ V | |
| 3 | ssdomg 8917 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)) |
| 5 | 1, 4 | sylbi 217 | . . 3 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘𝐴)) |
| 6 | alephon 9955 | . . . 4 ⊢ (ℵ‘𝐴) ∈ On | |
| 7 | onenon 9837 | . . . 4 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐴) ∈ dom card |
| 9 | 5, 8 | jctil 519 | . 2 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐴))) |
| 10 | alephgeom 9968 | . . . 4 ⊢ (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵)) | |
| 11 | fvex 6830 | . . . . . 6 ⊢ (ℵ‘𝐵) ∈ V | |
| 12 | ssdomg 8917 | . . . . . 6 ⊢ ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)) |
| 14 | infn0 9181 | . . . . 5 ⊢ (ω ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≠ ∅) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐵) → (ℵ‘𝐵) ≠ ∅) |
| 16 | 10, 15 | sylbi 217 | . . 3 ⊢ (𝐵 ∈ On → (ℵ‘𝐵) ≠ ∅) |
| 17 | alephon 9955 | . . . 4 ⊢ (ℵ‘𝐵) ∈ On | |
| 18 | onenon 9837 | . . . 4 ⊢ ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card) | |
| 19 | 17, 18 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐵) ∈ dom card |
| 20 | 16, 19 | jctil 519 | . 2 ⊢ (𝐵 ∈ On → ((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐵) ≠ ∅)) |
| 21 | infxp 10100 | . 2 ⊢ ((((ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐵) ≠ ∅)) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) | |
| 22 | 9, 20, 21 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∅c0 4278 class class class wbr 5086 × cxp 5609 dom cdm 5611 Oncon0 6301 ‘cfv 6476 ωcom 7791 ≈ cen 8861 ≼ cdom 8862 cardccrd 9823 ℵcale 9824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-oi 9391 df-har 9438 df-dju 9789 df-card 9827 df-aleph 9828 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |