MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infsdomnnOLD Structured version   Visualization version   GIF version

Theorem infsdomnnOLD 9257
Description: Obsolete version of infsdomnn 9256 as of 7-Jan-2025. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
infsdomnnOLD ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵𝐴)

Proof of Theorem infsdomnnOLD
StepHypRef Expression
1 reldom 8896 . . . 4 Rel ≼
21brrelex1i 5693 . . 3 (ω ≼ 𝐴 → ω ∈ V)
3 nnsdomg 9253 . . 3 ((ω ∈ V ∧ 𝐵 ∈ ω) → 𝐵 ≺ ω)
42, 3sylan 581 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵 ≺ ω)
5 simpl 484 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → ω ≼ 𝐴)
6 sdomdomtr 9061 . 2 ((𝐵 ≺ ω ∧ ω ≼ 𝐴) → 𝐵𝐴)
74, 5, 6syl2anc 585 1 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  Vcvv 3448   class class class wbr 5110  ωcom 7807  cdom 8888  csdm 8889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator