MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infsdomnnOLD Structured version   Visualization version   GIF version

Theorem infsdomnnOLD 9340
Description: Obsolete version of infsdomnn 9339 as of 7-Jan-2025. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
infsdomnnOLD ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵𝐴)

Proof of Theorem infsdomnnOLD
StepHypRef Expression
1 reldom 8992 . . . 4 Rel ≼
21brrelex1i 5740 . . 3 (ω ≼ 𝐴 → ω ∈ V)
3 nnsdomg 9336 . . 3 ((ω ∈ V ∧ 𝐵 ∈ ω) → 𝐵 ≺ ω)
42, 3sylan 580 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵 ≺ ω)
5 simpl 482 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → ω ≼ 𝐴)
6 sdomdomtr 9151 . 2 ((𝐵 ≺ ω ∧ ω ≼ 𝐴) → 𝐵𝐴)
74, 5, 6syl2anc 584 1 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Vcvv 3479   class class class wbr 5142  ωcom 7888  cdom 8984  csdm 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator