| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrlelttr 13061 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 ℝ*cxr 11156 < clt 11157 ≤ cle 11158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 |
| This theorem is referenced by: xlt2add 13166 ixxub 13273 elioc2 13316 elicc2 13318 limsupgre 15395 xrsdsreclblem 21358 mnfnei 23156 blgt0 24334 xblss2ps 24336 xblss2 24337 metustexhalf 24491 tgioo 24731 blcvx 24733 xrge0tsms 24770 metdcnlem 24772 metdscnlem 24791 ioombl 25513 uniioombllem1 25529 dvferm2lem 25937 dvlip2 25947 ftc1a 25991 coe1mul3 26051 ply1remlem 26117 idomrootle 26125 pserulm 26378 isblo3i 30802 xrge0infss 32768 iocinioc2 32787 xrge0tsmsd 33083 deg1addlt 33609 q1pvsca 33613 vietadeg1 33662 ply1degltdimlem 33707 ply1degltdim 33708 rtelextdg2lem 33811 sibfinima 34424 heicant 37768 itg2gt0cn 37788 ftc1anclem7 37812 ftc1anc 37814 dvrelog3 42231 aks6d1c5lem3 42303 aks6d1c6lem1 42336 aks6d1c6lem3 42338 supxrgelem 45498 supxrge 45499 xralrple2 45515 infxr 45527 infleinflem2 45531 xrralrecnnle 45543 unb2ltle 45575 eliocre 45671 iocopn 45682 ge0lere 45694 iccdificc 45701 limsupre 45801 limsuppnflem 45870 limsupre3lem 45892 limsupub2 45972 xlimmnfv 45994 fourierdlem27 46294 sge0isum 46587 meassre 46637 meaiuninclem 46640 omessre 46670 omeiunltfirp 46679 sge0hsphoire 46749 hoidmv1lelem1 46751 hoidmv1lelem2 46752 hoidmv1lelem3 46753 hoidmvlelem1 46755 hoidmvlelem4 46758 pimiooltgt 46870 pimincfltioc 46876 preimaleiinlt 46881 fsupdm 47002 |
| Copyright terms: Public domain | W3C validator |