![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrlelttr 13142 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 696 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 class class class wbr 5148 ℝ*cxr 11254 < clt 11255 ≤ cle 11256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 |
This theorem is referenced by: xlt2add 13246 ixxub 13352 elioc2 13394 elicc2 13396 limsupgre 15432 xrsdsreclblem 21195 mnfnei 22958 blgt0 24138 xblss2ps 24140 xblss2 24141 metustexhalf 24298 tgioo 24545 blcvx 24547 xrge0tsms 24583 metdcnlem 24585 metdscnlem 24604 ioombl 25327 uniioombllem1 25343 dvferm2lem 25751 dvlip2 25761 ftc1a 25803 coe1mul3 25866 ply1remlem 25929 pserulm 26184 isblo3i 30336 xrge0infss 32255 iocinioc2 32272 xrge0tsmsd 32494 deg1addlt 32960 q1pvsca 32964 ply1degltdimlem 33010 ply1degltdim 33011 sibfinima 33651 heicant 36839 itg2gt0cn 36859 ftc1anclem7 36883 ftc1anc 36885 dvrelog3 41249 idomrootle 42252 supxrgelem 44358 supxrge 44359 xralrple2 44375 infxr 44388 infleinflem2 44392 xrralrecnnle 44404 unb2ltle 44436 eliocre 44533 iocopn 44544 ge0lere 44556 iccdificc 44563 limsupre 44668 limsuppnflem 44737 limsupre3lem 44759 limsupub2 44839 xlimmnfv 44861 fourierdlem27 45161 sge0isum 45454 meassre 45504 meaiuninclem 45507 omessre 45537 omeiunltfirp 45546 sge0hsphoire 45616 hoidmv1lelem1 45618 hoidmv1lelem2 45619 hoidmv1lelem3 45620 hoidmvlelem1 45622 hoidmvlelem4 45625 pimiooltgt 45737 pimincfltioc 45743 preimaleiinlt 45748 fsupdm 45869 |
Copyright terms: Public domain | W3C validator |