Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrlelttr 12644 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 class class class wbr 5040 ℝ*cxr 10764 < clt 10765 ≤ cle 10766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-pre-lttri 10701 ax-pre-lttrn 10702 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-po 5452 df-so 5453 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 |
This theorem is referenced by: xlt2add 12748 ixxub 12854 elioc2 12896 elicc2 12898 limsupgre 14940 xrsdsreclblem 20275 mnfnei 21984 blgt0 23164 xblss2ps 23166 xblss2 23167 metustexhalf 23321 tgioo 23560 blcvx 23562 xrge0tsms 23598 metdcnlem 23600 metdscnlem 23619 ioombl 24329 uniioombllem1 24345 dvferm2lem 24750 dvlip2 24759 ftc1a 24801 coe1mul3 24864 ply1remlem 24927 pserulm 25181 isblo3i 28748 xrge0infss 30670 iocinioc2 30687 xrge0tsmsd 30906 sibfinima 31888 heicant 35467 itg2gt0cn 35487 ftc1anclem7 35511 ftc1anc 35513 dvrelog3 39724 idomrootle 40632 supxrgelem 42454 supxrge 42455 xralrple2 42471 infxr 42484 infleinflem2 42488 xrralrecnnle 42500 unb2ltle 42533 eliocre 42627 iocopn 42638 ge0lere 42650 iccdificc 42657 limsupre 42764 limsuppnflem 42833 limsupre3lem 42855 limsupub2 42935 xlimmnfv 42957 fourierdlem27 43257 sge0isum 43547 meassre 43597 meaiuninclem 43600 omessre 43630 omeiunltfirp 43639 sge0hsphoire 43709 hoidmv1lelem1 43711 hoidmv1lelem2 43712 hoidmv1lelem3 43713 hoidmvlelem1 43715 hoidmvlelem4 43718 pimiooltgt 43827 pimincfltioc 43832 preimaleiinlt 43837 |
Copyright terms: Public domain | W3C validator |