![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrlelttr 13218 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 698 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: xlt2add 13322 ixxub 13428 elioc2 13470 elicc2 13472 limsupgre 15527 xrsdsreclblem 21453 mnfnei 23250 blgt0 24430 xblss2ps 24432 xblss2 24433 metustexhalf 24590 tgioo 24837 blcvx 24839 xrge0tsms 24875 metdcnlem 24877 metdscnlem 24896 ioombl 25619 uniioombllem1 25635 dvferm2lem 26044 dvlip2 26054 ftc1a 26098 coe1mul3 26158 ply1remlem 26224 idomrootle 26232 pserulm 26483 isblo3i 30833 xrge0infss 32767 iocinioc2 32784 xrge0tsmsd 33041 deg1addlt 33585 q1pvsca 33589 ply1degltdimlem 33635 ply1degltdim 33636 rtelextdg2lem 33717 sibfinima 34304 heicant 37615 itg2gt0cn 37635 ftc1anclem7 37659 ftc1anc 37661 dvrelog3 42022 aks6d1c5lem3 42094 aks6d1c6lem1 42127 aks6d1c6lem3 42129 supxrgelem 45252 supxrge 45253 xralrple2 45269 infxr 45282 infleinflem2 45286 xrralrecnnle 45298 unb2ltle 45330 eliocre 45427 iocopn 45438 ge0lere 45450 iccdificc 45457 limsupre 45562 limsuppnflem 45631 limsupre3lem 45653 limsupub2 45733 xlimmnfv 45755 fourierdlem27 46055 sge0isum 46348 meassre 46398 meaiuninclem 46401 omessre 46431 omeiunltfirp 46440 sge0hsphoire 46510 hoidmv1lelem1 46512 hoidmv1lelem2 46513 hoidmv1lelem3 46514 hoidmvlelem1 46516 hoidmvlelem4 46519 pimiooltgt 46631 pimincfltioc 46637 preimaleiinlt 46642 fsupdm 46763 |
Copyright terms: Public domain | W3C validator |