![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrlelttr 12236 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1491 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 691 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 class class class wbr 4843 ℝ*cxr 10362 < clt 10363 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 |
This theorem is referenced by: xlt2add 12339 ixxub 12445 elioc2 12485 elicc2 12487 limsupgre 14553 xrsdsreclblem 20114 mnfnei 21354 blgt0 22532 xblss2ps 22534 xblss2 22535 metustexhalf 22689 tgioo 22927 blcvx 22929 xrge0tsms 22965 metdcnlem 22967 metdscnlem 22986 ioombl 23673 uniioombllem1 23689 dvferm2lem 24090 dvlip2 24099 ftc1a 24141 coe1mul3 24200 ply1remlem 24263 pserulm 24517 isblo3i 28181 xrge0infss 30043 iocinioc2 30059 xrge0tsmsd 30301 sibfinima 30917 heicant 33933 itg2gt0cn 33953 ftc1anclem7 33979 ftc1anc 33981 idomrootle 38554 supxrgelem 40293 supxrge 40294 xralrple2 40310 infxr 40323 infleinflem2 40327 xrralrecnnle 40342 unb2ltle 40381 eliocre 40476 iocopn 40487 ge0lere 40499 iccdificc 40506 limsupre 40613 limsuppnflem 40682 limsupre3lem 40704 xlimmnfv 40800 fourierdlem27 41090 sge0isum 41383 meassre 41433 meaiuninclem 41436 omessre 41466 omeiunltfirp 41475 sge0hsphoire 41545 hoidmv1lelem1 41547 hoidmv1lelem2 41548 hoidmv1lelem3 41549 hoidmvlelem1 41551 hoidmvlelem4 41554 pimiooltgt 41663 pimincfltioc 41668 preimaleiinlt 41673 |
Copyright terms: Public domain | W3C validator |