| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrlelttr 13170 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 |
| This theorem is referenced by: xlt2add 13274 ixxub 13381 elioc2 13424 elicc2 13426 limsupgre 15495 xrsdsreclblem 21378 mnfnei 23157 blgt0 24336 xblss2ps 24338 xblss2 24339 metustexhalf 24493 tgioo 24733 blcvx 24735 xrge0tsms 24772 metdcnlem 24774 metdscnlem 24793 ioombl 25516 uniioombllem1 25532 dvferm2lem 25940 dvlip2 25950 ftc1a 25994 coe1mul3 26054 ply1remlem 26120 idomrootle 26128 pserulm 26381 isblo3i 30728 xrge0infss 32683 iocinioc2 32702 xrge0tsmsd 33002 deg1addlt 33555 q1pvsca 33559 ply1degltdimlem 33608 ply1degltdim 33609 rtelextdg2lem 33706 sibfinima 34317 heicant 37625 itg2gt0cn 37645 ftc1anclem7 37669 ftc1anc 37671 dvrelog3 42024 aks6d1c5lem3 42096 aks6d1c6lem1 42129 aks6d1c6lem3 42131 supxrgelem 45312 supxrge 45313 xralrple2 45329 infxr 45342 infleinflem2 45346 xrralrecnnle 45358 unb2ltle 45390 eliocre 45486 iocopn 45497 ge0lere 45509 iccdificc 45516 limsupre 45618 limsuppnflem 45687 limsupre3lem 45709 limsupub2 45789 xlimmnfv 45811 fourierdlem27 46111 sge0isum 46404 meassre 46454 meaiuninclem 46457 omessre 46487 omeiunltfirp 46496 sge0hsphoire 46566 hoidmv1lelem1 46568 hoidmv1lelem2 46569 hoidmv1lelem3 46570 hoidmvlelem1 46572 hoidmvlelem4 46575 pimiooltgt 46687 pimincfltioc 46693 preimaleiinlt 46698 fsupdm 46819 |
| Copyright terms: Public domain | W3C validator |