| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrlelttr 13092 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: xlt2add 13196 ixxub 13303 elioc2 13346 elicc2 13348 limsupgre 15423 xrsdsreclblem 21305 mnfnei 23084 blgt0 24263 xblss2ps 24265 xblss2 24266 metustexhalf 24420 tgioo 24660 blcvx 24662 xrge0tsms 24699 metdcnlem 24701 metdscnlem 24720 ioombl 25442 uniioombllem1 25458 dvferm2lem 25866 dvlip2 25876 ftc1a 25920 coe1mul3 25980 ply1remlem 26046 idomrootle 26054 pserulm 26307 isblo3i 30703 xrge0infss 32656 iocinioc2 32675 xrge0tsmsd 32975 deg1addlt 33538 q1pvsca 33542 ply1degltdimlem 33591 ply1degltdim 33592 rtelextdg2lem 33689 sibfinima 34303 heicant 37622 itg2gt0cn 37642 ftc1anclem7 37666 ftc1anc 37668 dvrelog3 42026 aks6d1c5lem3 42098 aks6d1c6lem1 42131 aks6d1c6lem3 42133 supxrgelem 45306 supxrge 45307 xralrple2 45323 infxr 45336 infleinflem2 45340 xrralrecnnle 45352 unb2ltle 45384 eliocre 45480 iocopn 45491 ge0lere 45503 iccdificc 45510 limsupre 45612 limsuppnflem 45681 limsupre3lem 45703 limsupub2 45783 xlimmnfv 45805 fourierdlem27 46105 sge0isum 46398 meassre 46448 meaiuninclem 46451 omessre 46481 omeiunltfirp 46490 sge0hsphoire 46560 hoidmv1lelem1 46562 hoidmv1lelem2 46563 hoidmv1lelem3 46564 hoidmvlelem1 46566 hoidmvlelem4 46569 pimiooltgt 46681 pimincfltioc 46687 preimaleiinlt 46692 fsupdm 46813 |
| Copyright terms: Public domain | W3C validator |