| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrlelttr 13050 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 |
| This theorem is referenced by: xlt2add 13154 ixxub 13261 elioc2 13304 elicc2 13306 limsupgre 15383 xrsdsreclblem 21344 mnfnei 23131 blgt0 24309 xblss2ps 24311 xblss2 24312 metustexhalf 24466 tgioo 24706 blcvx 24708 xrge0tsms 24745 metdcnlem 24747 metdscnlem 24766 ioombl 25488 uniioombllem1 25504 dvferm2lem 25912 dvlip2 25922 ftc1a 25966 coe1mul3 26026 ply1remlem 26092 idomrootle 26100 pserulm 26353 isblo3i 30773 xrge0infss 32735 iocinioc2 32754 xrge0tsmsd 33034 deg1addlt 33552 q1pvsca 33556 ply1degltdimlem 33627 ply1degltdim 33628 rtelextdg2lem 33731 sibfinima 34344 heicant 37695 itg2gt0cn 37715 ftc1anclem7 37739 ftc1anc 37741 dvrelog3 42098 aks6d1c5lem3 42170 aks6d1c6lem1 42203 aks6d1c6lem3 42205 supxrgelem 45376 supxrge 45377 xralrple2 45393 infxr 45405 infleinflem2 45409 xrralrecnnle 45421 unb2ltle 45453 eliocre 45549 iocopn 45560 ge0lere 45572 iccdificc 45579 limsupre 45679 limsuppnflem 45748 limsupre3lem 45770 limsupub2 45850 xlimmnfv 45872 fourierdlem27 46172 sge0isum 46465 meassre 46515 meaiuninclem 46518 omessre 46548 omeiunltfirp 46557 sge0hsphoire 46627 hoidmv1lelem1 46629 hoidmv1lelem2 46630 hoidmv1lelem3 46631 hoidmvlelem1 46633 hoidmvlelem4 46636 pimiooltgt 46748 pimincfltioc 46754 preimaleiinlt 46759 fsupdm 46880 |
| Copyright terms: Public domain | W3C validator |