| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlelttrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrlelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrlelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| xrlelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrlelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrlelttr 13116 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: xlt2add 13220 ixxub 13327 elioc2 13370 elicc2 13372 limsupgre 15447 xrsdsreclblem 21329 mnfnei 23108 blgt0 24287 xblss2ps 24289 xblss2 24290 metustexhalf 24444 tgioo 24684 blcvx 24686 xrge0tsms 24723 metdcnlem 24725 metdscnlem 24744 ioombl 25466 uniioombllem1 25482 dvferm2lem 25890 dvlip2 25900 ftc1a 25944 coe1mul3 26004 ply1remlem 26070 idomrootle 26078 pserulm 26331 isblo3i 30730 xrge0infss 32683 iocinioc2 32702 xrge0tsmsd 33002 deg1addlt 33565 q1pvsca 33569 ply1degltdimlem 33618 ply1degltdim 33619 rtelextdg2lem 33716 sibfinima 34330 heicant 37649 itg2gt0cn 37669 ftc1anclem7 37693 ftc1anc 37695 dvrelog3 42053 aks6d1c5lem3 42125 aks6d1c6lem1 42158 aks6d1c6lem3 42160 supxrgelem 45333 supxrge 45334 xralrple2 45350 infxr 45363 infleinflem2 45367 xrralrecnnle 45379 unb2ltle 45411 eliocre 45507 iocopn 45518 ge0lere 45530 iccdificc 45537 limsupre 45639 limsuppnflem 45708 limsupre3lem 45730 limsupub2 45810 xlimmnfv 45832 fourierdlem27 46132 sge0isum 46425 meassre 46475 meaiuninclem 46478 omessre 46508 omeiunltfirp 46517 sge0hsphoire 46587 hoidmv1lelem1 46589 hoidmv1lelem2 46590 hoidmv1lelem3 46591 hoidmvlelem1 46593 hoidmvlelem4 46596 pimiooltgt 46708 pimincfltioc 46714 preimaleiinlt 46719 fsupdm 46840 |
| Copyright terms: Public domain | W3C validator |