MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfin Structured version   Visualization version   GIF version

Theorem onfin 9013
Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
onfin (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω))

Proof of Theorem onfin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8764 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 onomeneq 9011 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴𝑥𝐴 = 𝑥))
3 eleq1a 2834 . . . . . 6 (𝑥 ∈ ω → (𝐴 = 𝑥𝐴 ∈ ω))
43adantl 482 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 = 𝑥𝐴 ∈ ω))
52, 4sylbid 239 . . . 4 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴𝑥𝐴 ∈ ω))
65rexlimdva 3213 . . 3 (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ ω))
7 enrefnn 8837 . . . 4 (𝐴 ∈ ω → 𝐴𝐴)
8 breq2 5078 . . . . 5 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
98rspcev 3561 . . . 4 ((𝐴 ∈ ω ∧ 𝐴𝐴) → ∃𝑥 ∈ ω 𝐴𝑥)
107, 9mpdan 684 . . 3 (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴𝑥)
116, 10impbid1 224 . 2 (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ ω))
121, 11bitrid 282 1 (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  Oncon0 6266  ωcom 7712  cen 8730  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  onfin2  9014  fin17  10150  isfin7-2  10152
  Copyright terms: Public domain W3C validator