MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfin Structured version   Visualization version   GIF version

Theorem onfin 9124
Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
onfin (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω))

Proof of Theorem onfin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8898 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 onomeneq 9123 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴𝑥𝐴 = 𝑥))
3 eleq1a 2826 . . . . . 6 (𝑥 ∈ ω → (𝐴 = 𝑥𝐴 ∈ ω))
43adantl 481 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 = 𝑥𝐴 ∈ ω))
52, 4sylbid 240 . . . 4 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴𝑥𝐴 ∈ ω))
65rexlimdva 3133 . . 3 (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ ω))
7 enrefnn 8968 . . . 4 (𝐴 ∈ ω → 𝐴𝐴)
8 breq2 5095 . . . . 5 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
98rspcev 3577 . . . 4 ((𝐴 ∈ ω ∧ 𝐴𝐴) → ∃𝑥 ∈ ω 𝐴𝑥)
107, 9mpdan 687 . . 3 (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴𝑥)
116, 10impbid1 225 . 2 (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ ω))
121, 11bitrid 283 1 (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  Oncon0 6306  ωcom 7796  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by:  onfin2  9125  fin17  10282  isfin7-2  10284  cantnfub  43353  tfsnfin  43384
  Copyright terms: Public domain W3C validator