| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onfin | Structured version Visualization version GIF version | ||
| Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
| Ref | Expression |
|---|---|
| onfin | ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8904 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | onomeneq 9130 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 ↔ 𝐴 = 𝑥)) | |
| 3 | eleq1a 2828 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝐴 = 𝑥 → 𝐴 ∈ ω)) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 = 𝑥 → 𝐴 ∈ ω)) |
| 5 | 2, 4 | sylbid 240 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → 𝐴 ∈ ω)) |
| 6 | 5 | rexlimdva 3134 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ ω)) |
| 7 | enrefnn 8975 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 8 | breq2 5097 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 9 | 8 | rspcev 3573 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 10 | 7, 9 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 11 | 6, 10 | impbid1 225 | . 2 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ 𝐴 ∈ ω)) |
| 12 | 1, 11 | bitrid 283 | 1 ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 Oncon0 6311 ωcom 7802 ≈ cen 8872 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 |
| This theorem is referenced by: onfin2 9132 fin17 10292 isfin7-2 10294 cantnfub 43439 tfsnfin 43470 |
| Copyright terms: Public domain | W3C validator |