| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onfin | Structured version Visualization version GIF version | ||
| Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
| Ref | Expression |
|---|---|
| onfin | ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8950 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | onomeneq 9184 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 ↔ 𝐴 = 𝑥)) | |
| 3 | eleq1a 2824 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝐴 = 𝑥 → 𝐴 ∈ ω)) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 = 𝑥 → 𝐴 ∈ ω)) |
| 5 | 2, 4 | sylbid 240 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → 𝐴 ∈ ω)) |
| 6 | 5 | rexlimdva 3135 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ ω)) |
| 7 | enrefnn 9021 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 8 | breq2 5114 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 9 | 8 | rspcev 3591 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 10 | 7, 9 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 11 | 6, 10 | impbid1 225 | . 2 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ 𝐴 ∈ ω)) |
| 12 | 1, 11 | bitrid 283 | 1 ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 Oncon0 6335 ωcom 7845 ≈ cen 8918 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 |
| This theorem is referenced by: onfin2 9186 fin17 10354 isfin7-2 10356 cantnfub 43317 tfsnfin 43348 |
| Copyright terms: Public domain | W3C validator |