![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onfin | Structured version Visualization version GIF version |
Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
Ref | Expression |
---|---|
onfin | ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8978 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | onomeneq 9234 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 ↔ 𝐴 = 𝑥)) | |
3 | eleq1a 2827 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝐴 = 𝑥 → 𝐴 ∈ ω)) | |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 = 𝑥 → 𝐴 ∈ ω)) |
5 | 2, 4 | sylbid 239 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → 𝐴 ∈ ω)) |
6 | 5 | rexlimdva 3154 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ ω)) |
7 | enrefnn 9053 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
8 | breq2 5152 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
9 | 8 | rspcev 3612 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
10 | 7, 9 | mpdan 684 | . . 3 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
11 | 6, 10 | impbid1 224 | . 2 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ 𝐴 ∈ ω)) |
12 | 1, 11 | bitrid 283 | 1 ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 class class class wbr 5148 Oncon0 6364 ωcom 7859 ≈ cen 8942 Fincfn 8945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7860 df-1o 8472 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 |
This theorem is referenced by: onfin2 9237 fin17 10395 isfin7-2 10397 cantnfub 42537 tfsnfin 42568 |
Copyright terms: Public domain | W3C validator |