| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onfin | Structured version Visualization version GIF version | ||
| Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
| Ref | Expression |
|---|---|
| onfin | ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8947 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 2 | onomeneq 9178 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 ↔ 𝐴 = 𝑥)) | |
| 3 | eleq1a 2823 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝐴 = 𝑥 → 𝐴 ∈ ω)) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 = 𝑥 → 𝐴 ∈ ω)) |
| 5 | 2, 4 | sylbid 240 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → 𝐴 ∈ ω)) |
| 6 | 5 | rexlimdva 3134 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ ω)) |
| 7 | enrefnn 9018 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 8 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 9 | 8 | rspcev 3588 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 10 | 7, 9 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 11 | 6, 10 | impbid1 225 | . 2 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ 𝐴 ∈ ω)) |
| 12 | 1, 11 | bitrid 283 | 1 ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5107 Oncon0 6332 ωcom 7842 ≈ cen 8915 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 |
| This theorem is referenced by: onfin2 9180 fin17 10347 isfin7-2 10349 cantnfub 43310 tfsnfin 43341 |
| Copyright terms: Public domain | W3C validator |