MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfiALT Structured version   Visualization version   GIF version

Theorem ssfiALT 9205
Description: Shorter proof of ssfi 9204 using ax-pow 5361. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssfiALT ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssfiALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8999 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 bren 8976 . . . . 5 (𝐴𝑥 ↔ ∃𝑧 𝑧:𝐴1-1-onto𝑥)
3 f1ofo 6842 . . . . . . . . . . 11 (𝑧:𝐴1-1-onto𝑥𝑧:𝐴onto𝑥)
4 imassrn 6072 . . . . . . . . . . . 12 (𝑧𝐵) ⊆ ran 𝑧
5 forn 6810 . . . . . . . . . . . 12 (𝑧:𝐴onto𝑥 → ran 𝑧 = 𝑥)
64, 5sseqtrid 4031 . . . . . . . . . . 11 (𝑧:𝐴onto𝑥 → (𝑧𝐵) ⊆ 𝑥)
73, 6syl 17 . . . . . . . . . 10 (𝑧:𝐴1-1-onto𝑥 → (𝑧𝐵) ⊆ 𝑥)
8 ssnnfi 9199 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ (𝑧𝐵) ⊆ 𝑥) → (𝑧𝐵) ∈ Fin)
9 isfi 8999 . . . . . . . . . . 11 ((𝑧𝐵) ∈ Fin ↔ ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
108, 9sylib 217 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ (𝑧𝐵) ⊆ 𝑥) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
117, 10sylan2 591 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑧:𝐴1-1-onto𝑥) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
1211adantrr 715 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
13 f1of1 6834 . . . . . . . . . . . . . 14 (𝑧:𝐴1-1-onto𝑥𝑧:𝐴1-1𝑥)
14 f1ores 6849 . . . . . . . . . . . . . 14 ((𝑧:𝐴1-1𝑥𝐵𝐴) → (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵))
1513, 14sylan 578 . . . . . . . . . . . . 13 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵))
16 vex 3466 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
1716resex 6030 . . . . . . . . . . . . . . . 16 (𝑧𝐵) ∈ V
18 f1oeq1 6823 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑧𝐵) → (𝑥:𝐵1-1-onto→(𝑧𝐵) ↔ (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵)))
1917, 18spcev 3591 . . . . . . . . . . . . . . 15 ((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) → ∃𝑥 𝑥:𝐵1-1-onto→(𝑧𝐵))
20 bren 8976 . . . . . . . . . . . . . . 15 (𝐵 ≈ (𝑧𝐵) ↔ ∃𝑥 𝑥:𝐵1-1-onto→(𝑧𝐵))
2119, 20sylibr 233 . . . . . . . . . . . . . 14 ((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) → 𝐵 ≈ (𝑧𝐵))
22 entr 9029 . . . . . . . . . . . . . 14 ((𝐵 ≈ (𝑧𝐵) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2321, 22sylan 578 . . . . . . . . . . . . 13 (((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2415, 23sylan 578 . . . . . . . . . . . 12 (((𝑧:𝐴1-1-onto𝑥𝐵𝐴) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2524ex 411 . . . . . . . . . . 11 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑧𝐵) ≈ 𝑦𝐵𝑦))
2625reximdv 3160 . . . . . . . . . 10 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦 → ∃𝑦 ∈ ω 𝐵𝑦))
27 isfi 8999 . . . . . . . . . 10 (𝐵 ∈ Fin ↔ ∃𝑦 ∈ ω 𝐵𝑦)
2826, 27imbitrrdi 251 . . . . . . . . 9 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦𝐵 ∈ Fin))
2928adantl 480 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦𝐵 ∈ Fin))
3012, 29mpd 15 . . . . . . 7 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → 𝐵 ∈ Fin)
3130exp32 419 . . . . . 6 (𝑥 ∈ ω → (𝑧:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
3231exlimdv 1929 . . . . 5 (𝑥 ∈ ω → (∃𝑧 𝑧:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
332, 32biimtrid 241 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
3433rexlimiv 3138 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵 ∈ Fin))
351, 34sylbi 216 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵 ∈ Fin))
3635imp 405 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wex 1774  wcel 2099  wrex 3060  wss 3946   class class class wbr 5145  ran crn 5675  cres 5676  cima 5677  1-1wf1 6543  ontowfo 6544  1-1-ontowf1o 6545  ωcom 7868  cen 8963  Fincfn 8966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-om 7869  df-er 8726  df-en 8967  df-fin 8970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator