MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfiALT Structured version   Visualization version   GIF version

Theorem ssfiALT 9092
Description: Shorter proof of ssfi 9091 using ax-pow 5307. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssfiALT ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssfiALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8906 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 bren 8887 . . . . 5 (𝐴𝑥 ↔ ∃𝑧 𝑧:𝐴1-1-onto𝑥)
3 f1ofo 6777 . . . . . . . . . . 11 (𝑧:𝐴1-1-onto𝑥𝑧:𝐴onto𝑥)
4 imassrn 6026 . . . . . . . . . . . 12 (𝑧𝐵) ⊆ ran 𝑧
5 forn 6745 . . . . . . . . . . . 12 (𝑧:𝐴onto𝑥 → ran 𝑧 = 𝑥)
64, 5sseqtrid 3973 . . . . . . . . . . 11 (𝑧:𝐴onto𝑥 → (𝑧𝐵) ⊆ 𝑥)
73, 6syl 17 . . . . . . . . . 10 (𝑧:𝐴1-1-onto𝑥 → (𝑧𝐵) ⊆ 𝑥)
8 ssnnfi 9088 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ (𝑧𝐵) ⊆ 𝑥) → (𝑧𝐵) ∈ Fin)
9 isfi 8906 . . . . . . . . . . 11 ((𝑧𝐵) ∈ Fin ↔ ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
108, 9sylib 218 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ (𝑧𝐵) ⊆ 𝑥) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
117, 10sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑧:𝐴1-1-onto𝑥) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
1211adantrr 717 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
13 f1of1 6769 . . . . . . . . . . . . . 14 (𝑧:𝐴1-1-onto𝑥𝑧:𝐴1-1𝑥)
14 f1ores 6784 . . . . . . . . . . . . . 14 ((𝑧:𝐴1-1𝑥𝐵𝐴) → (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵))
1513, 14sylan 580 . . . . . . . . . . . . 13 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵))
16 vex 3441 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
1716resex 5984 . . . . . . . . . . . . . . . 16 (𝑧𝐵) ∈ V
18 f1oeq1 6758 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑧𝐵) → (𝑥:𝐵1-1-onto→(𝑧𝐵) ↔ (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵)))
1917, 18spcev 3557 . . . . . . . . . . . . . . 15 ((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) → ∃𝑥 𝑥:𝐵1-1-onto→(𝑧𝐵))
20 bren 8887 . . . . . . . . . . . . . . 15 (𝐵 ≈ (𝑧𝐵) ↔ ∃𝑥 𝑥:𝐵1-1-onto→(𝑧𝐵))
2119, 20sylibr 234 . . . . . . . . . . . . . 14 ((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) → 𝐵 ≈ (𝑧𝐵))
22 entr 8937 . . . . . . . . . . . . . 14 ((𝐵 ≈ (𝑧𝐵) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2321, 22sylan 580 . . . . . . . . . . . . 13 (((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2415, 23sylan 580 . . . . . . . . . . . 12 (((𝑧:𝐴1-1-onto𝑥𝐵𝐴) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2524ex 412 . . . . . . . . . . 11 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑧𝐵) ≈ 𝑦𝐵𝑦))
2625reximdv 3148 . . . . . . . . . 10 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦 → ∃𝑦 ∈ ω 𝐵𝑦))
27 isfi 8906 . . . . . . . . . 10 (𝐵 ∈ Fin ↔ ∃𝑦 ∈ ω 𝐵𝑦)
2826, 27imbitrrdi 252 . . . . . . . . 9 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦𝐵 ∈ Fin))
2928adantl 481 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦𝐵 ∈ Fin))
3012, 29mpd 15 . . . . . . 7 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → 𝐵 ∈ Fin)
3130exp32 420 . . . . . 6 (𝑥 ∈ ω → (𝑧:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
3231exlimdv 1934 . . . . 5 (𝑥 ∈ ω → (∃𝑧 𝑧:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
332, 32biimtrid 242 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
3433rexlimiv 3127 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵 ∈ Fin))
351, 34sylbi 217 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵 ∈ Fin))
3635imp 406 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2113  wrex 3057  wss 3898   class class class wbr 5095  ran crn 5622  cres 5623  cima 5624  1-1wf1 6485  ontowfo 6486  1-1-ontowf1o 6487  ωcom 7804  cen 8874  Fincfn 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-om 7805  df-er 8630  df-en 8878  df-fin 8881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator