MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfiALT Structured version   Visualization version   GIF version

Theorem ssfiALT 9186
Description: Shorter proof of ssfi 9185 using ax-pow 5335. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssfiALT ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssfiALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8988 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 bren 8967 . . . . 5 (𝐴𝑥 ↔ ∃𝑧 𝑧:𝐴1-1-onto𝑥)
3 f1ofo 6824 . . . . . . . . . . 11 (𝑧:𝐴1-1-onto𝑥𝑧:𝐴onto𝑥)
4 imassrn 6058 . . . . . . . . . . . 12 (𝑧𝐵) ⊆ ran 𝑧
5 forn 6792 . . . . . . . . . . . 12 (𝑧:𝐴onto𝑥 → ran 𝑧 = 𝑥)
64, 5sseqtrid 4001 . . . . . . . . . . 11 (𝑧:𝐴onto𝑥 → (𝑧𝐵) ⊆ 𝑥)
73, 6syl 17 . . . . . . . . . 10 (𝑧:𝐴1-1-onto𝑥 → (𝑧𝐵) ⊆ 𝑥)
8 ssnnfi 9181 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ (𝑧𝐵) ⊆ 𝑥) → (𝑧𝐵) ∈ Fin)
9 isfi 8988 . . . . . . . . . . 11 ((𝑧𝐵) ∈ Fin ↔ ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
108, 9sylib 218 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ (𝑧𝐵) ⊆ 𝑥) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
117, 10sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑧:𝐴1-1-onto𝑥) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
1211adantrr 717 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → ∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦)
13 f1of1 6816 . . . . . . . . . . . . . 14 (𝑧:𝐴1-1-onto𝑥𝑧:𝐴1-1𝑥)
14 f1ores 6831 . . . . . . . . . . . . . 14 ((𝑧:𝐴1-1𝑥𝐵𝐴) → (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵))
1513, 14sylan 580 . . . . . . . . . . . . 13 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵))
16 vex 3463 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
1716resex 6016 . . . . . . . . . . . . . . . 16 (𝑧𝐵) ∈ V
18 f1oeq1 6805 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑧𝐵) → (𝑥:𝐵1-1-onto→(𝑧𝐵) ↔ (𝑧𝐵):𝐵1-1-onto→(𝑧𝐵)))
1917, 18spcev 3585 . . . . . . . . . . . . . . 15 ((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) → ∃𝑥 𝑥:𝐵1-1-onto→(𝑧𝐵))
20 bren 8967 . . . . . . . . . . . . . . 15 (𝐵 ≈ (𝑧𝐵) ↔ ∃𝑥 𝑥:𝐵1-1-onto→(𝑧𝐵))
2119, 20sylibr 234 . . . . . . . . . . . . . 14 ((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) → 𝐵 ≈ (𝑧𝐵))
22 entr 9018 . . . . . . . . . . . . . 14 ((𝐵 ≈ (𝑧𝐵) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2321, 22sylan 580 . . . . . . . . . . . . 13 (((𝑧𝐵):𝐵1-1-onto→(𝑧𝐵) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2415, 23sylan 580 . . . . . . . . . . . 12 (((𝑧:𝐴1-1-onto𝑥𝐵𝐴) ∧ (𝑧𝐵) ≈ 𝑦) → 𝐵𝑦)
2524ex 412 . . . . . . . . . . 11 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑧𝐵) ≈ 𝑦𝐵𝑦))
2625reximdv 3155 . . . . . . . . . 10 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦 → ∃𝑦 ∈ ω 𝐵𝑦))
27 isfi 8988 . . . . . . . . . 10 (𝐵 ∈ Fin ↔ ∃𝑦 ∈ ω 𝐵𝑦)
2826, 27imbitrrdi 252 . . . . . . . . 9 ((𝑧:𝐴1-1-onto𝑥𝐵𝐴) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦𝐵 ∈ Fin))
2928adantl 481 . . . . . . . 8 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → (∃𝑦 ∈ ω (𝑧𝐵) ≈ 𝑦𝐵 ∈ Fin))
3012, 29mpd 15 . . . . . . 7 ((𝑥 ∈ ω ∧ (𝑧:𝐴1-1-onto𝑥𝐵𝐴)) → 𝐵 ∈ Fin)
3130exp32 420 . . . . . 6 (𝑥 ∈ ω → (𝑧:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
3231exlimdv 1933 . . . . 5 (𝑥 ∈ ω → (∃𝑧 𝑧:𝐴1-1-onto𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
332, 32biimtrid 242 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵 ∈ Fin)))
3433rexlimiv 3134 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵 ∈ Fin))
351, 34sylbi 217 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵 ∈ Fin))
3635imp 406 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wrex 3060  wss 3926   class class class wbr 5119  ran crn 5655  cres 5656  cima 5657  1-1wf1 6527  ontowfo 6528  1-1-ontowf1o 6529  ωcom 7859  cen 8954  Fincfn 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-om 7860  df-er 8717  df-en 8958  df-fin 8961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator