Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfiniteg | Structured version Visualization version GIF version |
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
isfiniteg | ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8719 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | nnsdomg 9003 | . . . . 5 ⊢ ((ω ∈ V ∧ 𝑥 ∈ ω) → 𝑥 ≺ ω) | |
3 | sdomen1 8857 | . . . . 5 ⊢ (𝐴 ≈ 𝑥 → (𝐴 ≺ ω ↔ 𝑥 ≺ ω)) | |
4 | 2, 3 | syl5ibrcom 246 | . . . 4 ⊢ ((ω ∈ V ∧ 𝑥 ∈ ω) → (𝐴 ≈ 𝑥 → 𝐴 ≺ ω)) |
5 | 4 | rexlimdva 3212 | . . 3 ⊢ (ω ∈ V → (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ≺ ω)) |
6 | 1, 5 | syl5bi 241 | . 2 ⊢ (ω ∈ V → (𝐴 ∈ Fin → 𝐴 ≺ ω)) |
7 | isfinite2 9002 | . 2 ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | |
8 | 6, 7 | impbid1 224 | 1 ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 class class class wbr 5070 ωcom 7687 ≈ cen 8688 ≺ csdm 8690 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 |
This theorem is referenced by: unfi2 9013 unifi2 9039 isfinite 9340 axcclem 10144 |
Copyright terms: Public domain | W3C validator |