MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfiniteg Structured version   Visualization version   GIF version

Theorem isfiniteg 9331
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
isfiniteg (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω))

Proof of Theorem isfiniteg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8999 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 nnsdomg 9329 . . . . 5 ((ω ∈ V ∧ 𝑥 ∈ ω) → 𝑥 ≺ ω)
3 sdomen1 9151 . . . . 5 (𝐴𝑥 → (𝐴 ≺ ω ↔ 𝑥 ≺ ω))
42, 3syl5ibrcom 246 . . . 4 ((ω ∈ V ∧ 𝑥 ∈ ω) → (𝐴𝑥𝐴 ≺ ω))
54rexlimdva 3145 . . 3 (ω ∈ V → (∃𝑥 ∈ ω 𝐴𝑥𝐴 ≺ ω))
61, 5biimtrid 241 . 2 (ω ∈ V → (𝐴 ∈ Fin → 𝐴 ≺ ω))
7 isfinite2 9328 . 2 (𝐴 ≺ ω → 𝐴 ∈ Fin)
86, 7impbid1 224 1 (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099  wrex 3060  Vcvv 3462   class class class wbr 5145  ωcom 7868  cen 8963  csdm 8965  Fincfn 8966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970
This theorem is referenced by:  unfi2  9343  unifi2  9380  isfinite  9688  axcclem  10491
  Copyright terms: Public domain W3C validator