MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppginv Structured version   Visualization version   GIF version

Theorem oppginv 19271
Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Hypotheses
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
oppginv.2 𝐼 = (invg𝑅)
Assertion
Ref Expression
oppginv (𝑅 ∈ Grp → 𝐼 = (invg𝑂))

Proof of Theorem oppginv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 oppginv.2 . . . 4 𝐼 = (invg𝑅)
31, 2grpinvf 18899 . . 3 (𝑅 ∈ Grp → 𝐼:(Base‘𝑅)⟶(Base‘𝑅))
4 eqid 2731 . . . . . 6 (+g𝑅) = (+g𝑅)
5 oppgbas.1 . . . . . 6 𝑂 = (oppg𝑅)
6 eqid 2731 . . . . . 6 (+g𝑂) = (+g𝑂)
74, 5, 6oppgplus 19261 . . . . 5 ((𝐼𝑥)(+g𝑂)𝑥) = (𝑥(+g𝑅)(𝐼𝑥))
8 eqid 2731 . . . . . 6 (0g𝑅) = (0g𝑅)
91, 4, 8, 2grprinv 18903 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(𝐼𝑥)) = (0g𝑅))
107, 9eqtrid 2778 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅))
1110ralrimiva 3124 . . 3 (𝑅 ∈ Grp → ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅))
125oppggrp 19269 . . . 4 (𝑅 ∈ Grp → 𝑂 ∈ Grp)
135, 1oppgbas 19263 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
145, 8oppgid 19268 . . . . 5 (0g𝑅) = (0g𝑂)
15 eqid 2731 . . . . 5 (invg𝑂) = (invg𝑂)
1613, 6, 14, 15isgrpinv 18906 . . . 4 (𝑂 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅)) ↔ (invg𝑂) = 𝐼))
1712, 16syl 17 . . 3 (𝑅 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅)) ↔ (invg𝑂) = 𝐼))
183, 11, 17mpbi2and 712 . 2 (𝑅 ∈ Grp → (invg𝑂) = 𝐼)
1918eqcomd 2737 1 (𝑅 ∈ Grp → 𝐼 = (invg𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847  oppgcoppg 19257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-oppg 19258
This theorem is referenced by:  oppgsubg  19275  oppgtgp  24013  tgpconncomp  24028
  Copyright terms: Public domain W3C validator