MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppginv Structured version   Visualization version   GIF version

Theorem oppginv 19238
Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Hypotheses
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
oppginv.2 𝐼 = (invg𝑅)
Assertion
Ref Expression
oppginv (𝑅 ∈ Grp → 𝐼 = (invg𝑂))

Proof of Theorem oppginv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 oppginv.2 . . . 4 𝐼 = (invg𝑅)
31, 2grpinvf 18865 . . 3 (𝑅 ∈ Grp → 𝐼:(Base‘𝑅)⟶(Base‘𝑅))
4 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
5 oppgbas.1 . . . . . 6 𝑂 = (oppg𝑅)
6 eqid 2729 . . . . . 6 (+g𝑂) = (+g𝑂)
74, 5, 6oppgplus 19228 . . . . 5 ((𝐼𝑥)(+g𝑂)𝑥) = (𝑥(+g𝑅)(𝐼𝑥))
8 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
91, 4, 8, 2grprinv 18869 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(𝐼𝑥)) = (0g𝑅))
107, 9eqtrid 2776 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅))
1110ralrimiva 3121 . . 3 (𝑅 ∈ Grp → ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅))
125oppggrp 19236 . . . 4 (𝑅 ∈ Grp → 𝑂 ∈ Grp)
135, 1oppgbas 19230 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
145, 8oppgid 19235 . . . . 5 (0g𝑅) = (0g𝑂)
15 eqid 2729 . . . . 5 (invg𝑂) = (invg𝑂)
1613, 6, 14, 15isgrpinv 18872 . . . 4 (𝑂 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅)) ↔ (invg𝑂) = 𝐼))
1712, 16syl 17 . . 3 (𝑅 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼𝑥)(+g𝑂)𝑥) = (0g𝑅)) ↔ (invg𝑂) = 𝐼))
183, 11, 17mpbi2and 712 . 2 (𝑅 ∈ Grp → (invg𝑂) = 𝐼)
1918eqcomd 2735 1 (𝑅 ∈ Grp → 𝐼 = (invg𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18812  invgcminusg 18813  oppgcoppg 19224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-oppg 19225
This theorem is referenced by:  oppgsubg  19242  oppgtgp  23983  tgpconncomp  23998
  Copyright terms: Public domain W3C validator