Step | Hyp | Ref
| Expression |
1 | | ineq1 4205 |
. . . 4
β’ (π₯ = (π(ballβπ·)π
) β (π₯ β© (π β {π})) = ((π(ballβπ·)π
) β© (π β {π}))) |
2 | 1 | neeq1d 3000 |
. . 3
β’ (π₯ = (π(ballβπ·)π
) β ((π₯ β© (π β {π})) β β
β ((π(ballβπ·)π
) β© (π β {π})) β β
)) |
3 | | simpl3 1193 |
. . . 4
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π β ((limPtβπ½)βπ)) |
4 | | simpl1 1191 |
. . . . . 6
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π· β (βMetβπ)) |
5 | | mopni.1 |
. . . . . . 7
β’ π½ = (MetOpenβπ·) |
6 | 5 | mopntop 23953 |
. . . . . 6
β’ (π· β (βMetβπ) β π½ β Top) |
7 | 4, 6 | syl 17 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π½ β Top) |
8 | | simpl2 1192 |
. . . . . 6
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π β π) |
9 | 5 | mopnuni 23954 |
. . . . . . 7
β’ (π· β (βMetβπ) β π = βͺ π½) |
10 | 4, 9 | syl 17 |
. . . . . 6
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π = βͺ
π½) |
11 | 8, 10 | sseqtrd 4022 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π β βͺ π½) |
12 | | eqid 2732 |
. . . . . . . 8
β’ βͺ π½ =
βͺ π½ |
13 | 12 | lpss 22653 |
. . . . . . 7
β’ ((π½ β Top β§ π β βͺ π½)
β ((limPtβπ½)βπ) β βͺ π½) |
14 | 7, 11, 13 | syl2anc 584 |
. . . . . 6
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β
((limPtβπ½)βπ) β βͺ π½) |
15 | 14, 3 | sseldd 3983 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π β βͺ π½) |
16 | 12 | islp2 22656 |
. . . . 5
β’ ((π½ β Top β§ π β βͺ π½
β§ π β βͺ π½)
β (π β
((limPtβπ½)βπ) β βπ₯ β ((neiβπ½)β{π})(π₯ β© (π β {π})) β β
)) |
17 | 7, 11, 15, 16 | syl3anc 1371 |
. . . 4
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β (π β ((limPtβπ½)βπ) β βπ₯ β ((neiβπ½)β{π})(π₯ β© (π β {π})) β β
)) |
18 | 3, 17 | mpbid 231 |
. . 3
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β
βπ₯ β
((neiβπ½)β{π})(π₯ β© (π β {π})) β β
) |
19 | 15, 10 | eleqtrrd 2836 |
. . . 4
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π β π) |
20 | | simpr 485 |
. . . 4
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β π
β
β+) |
21 | 5 | blnei 24018 |
. . . 4
β’ ((π· β (βMetβπ) β§ π β π β§ π
β β+) β (π(ballβπ·)π
) β ((neiβπ½)β{π})) |
22 | 4, 19, 20, 21 | syl3anc 1371 |
. . 3
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β (π(ballβπ·)π
) β ((neiβπ½)β{π})) |
23 | 2, 18, 22 | rspcdva 3613 |
. 2
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β ((π(ballβπ·)π
) β© (π β {π})) β β
) |
24 | | elin 3964 |
. . . . 5
β’ (π₯ β ((π(ballβπ·)π
) β© (π β {π})) β (π₯ β (π(ballβπ·)π
) β§ π₯ β (π β {π}))) |
25 | | eldifi 4126 |
. . . . . . 7
β’ (π₯ β (π β {π}) β π₯ β π) |
26 | 25 | anim2i 617 |
. . . . . 6
β’ ((π₯ β (π(ballβπ·)π
) β§ π₯ β (π β {π})) β (π₯ β (π(ballβπ·)π
) β§ π₯ β π)) |
27 | 26 | ancomd 462 |
. . . . 5
β’ ((π₯ β (π(ballβπ·)π
) β§ π₯ β (π β {π})) β (π₯ β π β§ π₯ β (π(ballβπ·)π
))) |
28 | 24, 27 | sylbi 216 |
. . . 4
β’ (π₯ β ((π(ballβπ·)π
) β© (π β {π})) β (π₯ β π β§ π₯ β (π(ballβπ·)π
))) |
29 | 28 | eximi 1837 |
. . 3
β’
(βπ₯ π₯ β ((π(ballβπ·)π
) β© (π β {π})) β βπ₯(π₯ β π β§ π₯ β (π(ballβπ·)π
))) |
30 | | n0 4346 |
. . 3
β’ (((π(ballβπ·)π
) β© (π β {π})) β β
β βπ₯ π₯ β ((π(ballβπ·)π
) β© (π β {π}))) |
31 | | df-rex 3071 |
. . 3
β’
(βπ₯ β
π π₯ β (π(ballβπ·)π
) β βπ₯(π₯ β π β§ π₯ β (π(ballβπ·)π
))) |
32 | 29, 30, 31 | 3imtr4i 291 |
. 2
β’ (((π(ballβπ·)π
) β© (π β {π})) β β
β βπ₯ β π π₯ β (π(ballβπ·)π
)) |
33 | 23, 32 | syl 17 |
1
β’ (((π· β (βMetβπ) β§ π β π β§ π β ((limPtβπ½)βπ)) β§ π
β β+) β
βπ₯ β π π₯ β (π(ballβπ·)π
)) |