MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpbl Structured version   Visualization version   GIF version

Theorem lpbl 24413
Description: Every ball around a limit point 𝑃 of a subset 𝑆 includes a member of 𝑆 (even if 𝑃𝑆). (Contributed by NM, 9-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
lpbl (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐽   𝑥,𝑅   𝑥,𝑆   𝑥,𝑃   𝑥,𝑋

Proof of Theorem lpbl
StepHypRef Expression
1 ineq1 4158 . . . 4 (𝑥 = (𝑃(ball‘𝐷)𝑅) → (𝑥 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})))
21neeq1d 2987 . . 3 (𝑥 = (𝑃(ball‘𝐷)𝑅) → ((𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
3 simpl3 1194 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))
4 simpl1 1192 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
5 mopni.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
65mopntop 24350 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
74, 6syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝐽 ∈ Top)
8 simpl2 1193 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑆𝑋)
95mopnuni 24351 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
104, 9syl 17 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑋 = 𝐽)
118, 10sseqtrd 3966 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑆 𝐽)
12 eqid 2731 . . . . . . . 8 𝐽 = 𝐽
1312lpss 23052 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((limPt‘𝐽)‘𝑆) ⊆ 𝐽)
147, 11, 13syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ((limPt‘𝐽)‘𝑆) ⊆ 𝐽)
1514, 3sseldd 3930 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 𝐽)
1612islp2 23055 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
177, 11, 15, 16syl3anc 1373 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
183, 17mpbid 232 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
1915, 10eleqtrrd 2834 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃𝑋)
20 simpr 484 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+)
215blnei 24412 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃}))
224, 19, 20, 21syl3anc 1373 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃}))
232, 18, 22rspcdva 3573 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
24 elin 3913 . . . . 5 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})))
25 eldifi 4076 . . . . . . 7 (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥𝑆)
2625anim2i 617 . . . . . 6 ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑆))
2726ancomd 461 . . . . 5 ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑥𝑆𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
2824, 27sylbi 217 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) → (𝑥𝑆𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
2928eximi 1836 . . 3 (∃𝑥 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥𝑆𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
30 n0 4298 . . 3 (((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})))
31 df-rex 3057 . . 3 (∃𝑥𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ ∃𝑥(𝑥𝑆𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
3229, 30, 313imtr4i 292 . 2 (((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ → ∃𝑥𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
3323, 32syl 17 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3894  cin 3896  wss 3897  c0 4278  {csn 4571   cuni 4854  cfv 6476  (class class class)co 7341  +crp 12885  ∞Metcxmet 21271  ballcbl 21273  MetOpencmopn 21276  Topctop 22803  neicnei 23007  limPtclp 23044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046
This theorem is referenced by:  limcrecl  45669
  Copyright terms: Public domain W3C validator