MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpbl Structured version   Visualization version   GIF version

Theorem lpbl 24447
Description: Every ball around a limit point 𝑃 of a subset 𝑆 includes a member of 𝑆 (even if 𝑃𝑆). (Contributed by NM, 9-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
lpbl (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐽   𝑥,𝑅   𝑥,𝑆   𝑥,𝑃   𝑥,𝑋

Proof of Theorem lpbl
StepHypRef Expression
1 ineq1 4193 . . . 4 (𝑥 = (𝑃(ball‘𝐷)𝑅) → (𝑥 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})))
21neeq1d 2992 . . 3 (𝑥 = (𝑃(ball‘𝐷)𝑅) → ((𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
3 simpl3 1194 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))
4 simpl1 1192 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
5 mopni.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
65mopntop 24384 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
74, 6syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝐽 ∈ Top)
8 simpl2 1193 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑆𝑋)
95mopnuni 24385 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
104, 9syl 17 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑋 = 𝐽)
118, 10sseqtrd 4000 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑆 𝐽)
12 eqid 2736 . . . . . . . 8 𝐽 = 𝐽
1312lpss 23085 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((limPt‘𝐽)‘𝑆) ⊆ 𝐽)
147, 11, 13syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ((limPt‘𝐽)‘𝑆) ⊆ 𝐽)
1514, 3sseldd 3964 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 𝐽)
1612islp2 23088 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
177, 11, 15, 16syl3anc 1373 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
183, 17mpbid 232 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
1915, 10eleqtrrd 2838 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃𝑋)
20 simpr 484 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+)
215blnei 24446 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃}))
224, 19, 20, 21syl3anc 1373 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃}))
232, 18, 22rspcdva 3607 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)
24 elin 3947 . . . . 5 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})))
25 eldifi 4111 . . . . . . 7 (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥𝑆)
2625anim2i 617 . . . . . 6 ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑆))
2726ancomd 461 . . . . 5 ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑥𝑆𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
2824, 27sylbi 217 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) → (𝑥𝑆𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
2928eximi 1835 . . 3 (∃𝑥 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥𝑆𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
30 n0 4333 . . 3 (((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})))
31 df-rex 3062 . . 3 (∃𝑥𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ ∃𝑥(𝑥𝑆𝑥 ∈ (𝑃(ball‘𝐷)𝑅)))
3229, 30, 313imtr4i 292 . 2 (((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ → ∃𝑥𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
3323, 32syl 17 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  cdif 3928  cin 3930  wss 3931  c0 4313  {csn 4606   cuni 4888  cfv 6536  (class class class)co 7410  +crp 13013  ∞Metcxmet 21305  ballcbl 21307  MetOpencmopn 21310  Topctop 22836  neicnei 23040  limPtclp 23077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079
This theorem is referenced by:  limcrecl  45625
  Copyright terms: Public domain W3C validator