![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lpbl | Structured version Visualization version GIF version |
Description: Every ball around a limit point 𝑃 of a subset 𝑆 includes a member of 𝑆 (even if 𝑃 ∉ 𝑆). (Contributed by NM, 9-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) |
Ref | Expression |
---|---|
mopni.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
lpbl | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4234 | . . . 4 ⊢ (𝑥 = (𝑃(ball‘𝐷)𝑅) → (𝑥 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃}))) | |
2 | 1 | neeq1d 3006 | . . 3 ⊢ (𝑥 = (𝑃(ball‘𝐷)𝑅) → ((𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)) |
3 | simpl3 1193 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) | |
4 | simpl1 1191 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) | |
5 | mopni.1 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
6 | 5 | mopntop 24471 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝐽 ∈ Top) |
8 | simpl2 1192 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑆 ⊆ 𝑋) | |
9 | 5 | mopnuni 24472 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
10 | 4, 9 | syl 17 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑋 = ∪ 𝐽) |
11 | 8, 10 | sseqtrd 4049 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑆 ⊆ ∪ 𝐽) |
12 | eqid 2740 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
13 | 12 | lpss 23171 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((limPt‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
14 | 7, 11, 13 | syl2anc 583 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ((limPt‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
15 | 14, 3 | sseldd 4009 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ∪ 𝐽) |
16 | 12 | islp2 23174 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)) |
17 | 7, 11, 15, 16 | syl3anc 1371 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)) |
18 | 3, 17 | mpbid 232 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) |
19 | 15, 10 | eleqtrrd 2847 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ 𝑋) |
20 | simpr 484 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+) | |
21 | 5 | blnei 24536 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) |
22 | 4, 19, 20, 21 | syl3anc 1371 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) |
23 | 2, 18, 22 | rspcdva 3636 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅) |
24 | elin 3992 | . . . . 5 ⊢ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃}))) | |
25 | eldifi 4154 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥 ∈ 𝑆) | |
26 | 25 | anim2i 616 | . . . . . 6 ⊢ ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ 𝑆)) |
27 | 26 | ancomd 461 | . . . . 5 ⊢ ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) |
28 | 24, 27 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) |
29 | 28 | eximi 1833 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) |
30 | n0 4376 | . . 3 ⊢ (((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃}))) | |
31 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) | |
32 | 29, 30, 31 | 3imtr4i 292 | . 2 ⊢ (((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) |
33 | 23, 32 | syl 17 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 ℝ+crp 13057 ∞Metcxmet 21372 ballcbl 21374 MetOpencmopn 21377 Topctop 22920 neicnei 23126 limPtclp 23163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 |
This theorem is referenced by: limcrecl 45550 |
Copyright terms: Public domain | W3C validator |