| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lpbl | Structured version Visualization version GIF version | ||
| Description: Every ball around a limit point 𝑃 of a subset 𝑆 includes a member of 𝑆 (even if 𝑃 ∉ 𝑆). (Contributed by NM, 9-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) |
| Ref | Expression |
|---|---|
| mopni.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| lpbl | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4176 | . . . 4 ⊢ (𝑥 = (𝑃(ball‘𝐷)𝑅) → (𝑥 ∩ (𝑆 ∖ {𝑃})) = ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃}))) | |
| 2 | 1 | neeq1d 2984 | . . 3 ⊢ (𝑥 = (𝑃(ball‘𝐷)𝑅) → ((𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅)) |
| 3 | simpl3 1194 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) | |
| 4 | simpl1 1192 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 5 | mopni.1 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 6 | 5 | mopntop 24328 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝐽 ∈ Top) |
| 8 | simpl2 1193 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑆 ⊆ 𝑋) | |
| 9 | 5 | mopnuni 24329 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 10 | 4, 9 | syl 17 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑋 = ∪ 𝐽) |
| 11 | 8, 10 | sseqtrd 3983 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑆 ⊆ ∪ 𝐽) |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | lpss 23029 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((limPt‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
| 14 | 7, 11, 13 | syl2anc 584 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ((limPt‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
| 15 | 14, 3 | sseldd 3947 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ∪ 𝐽) |
| 16 | 12 | islp2 23032 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)) |
| 17 | 7, 11, 15, 16 | syl3anc 1373 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)) |
| 18 | 3, 17 | mpbid 232 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅) |
| 19 | 15, 10 | eleqtrrd 2831 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ 𝑋) |
| 20 | simpr 484 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ+) | |
| 21 | 5 | blnei 24390 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) |
| 22 | 4, 19, 20, 21 | syl3anc 1373 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) |
| 23 | 2, 18, 22 | rspcdva 3589 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅) |
| 24 | elin 3930 | . . . . 5 ⊢ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃}))) | |
| 25 | eldifi 4094 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑆 ∖ {𝑃}) → 𝑥 ∈ 𝑆) | |
| 26 | 25 | anim2i 617 | . . . . . 6 ⊢ ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ 𝑆)) |
| 27 | 26 | ancomd 461 | . . . . 5 ⊢ ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑆 ∖ {𝑃})) → (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) |
| 28 | 24, 27 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) → (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) |
| 29 | 28 | eximi 1835 | . . 3 ⊢ (∃𝑥 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) → ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) |
| 30 | n0 4316 | . . 3 ⊢ (((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃}))) | |
| 31 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))) | |
| 32 | 29, 30, 31 | 3imtr4i 292 | . 2 ⊢ (((𝑃(ball‘𝐷)𝑅) ∩ (𝑆 ∖ {𝑃})) ≠ ∅ → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) |
| 33 | 23, 32 | syl 17 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {csn 4589 ∪ cuni 4871 ‘cfv 6511 (class class class)co 7387 ℝ+crp 12951 ∞Metcxmet 21249 ballcbl 21251 MetOpencmopn 21254 Topctop 22780 neicnei 22984 limPtclp 23021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 |
| This theorem is referenced by: limcrecl 45627 |
| Copyright terms: Public domain | W3C validator |