Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numth2 | Structured version Visualization version GIF version |
Description: Numeration theorem: any set is equinumerous to some ordinal (using AC). Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 20-Oct-2003.) |
Ref | Expression |
---|---|
numth.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
numth2 | ⊢ ∃𝑥 ∈ On 𝑥 ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numth.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | numth3 9943 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ dom card) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ dom card |
4 | isnum2 9420 | . 2 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
5 | 3, 4 | mpbi 233 | 1 ⊢ ∃𝑥 ∈ On 𝑥 ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ∃wrex 3071 Vcvv 3409 class class class wbr 5036 dom cdm 5528 Oncon0 6174 ≈ cen 8537 cardccrd 9410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-ac2 9936 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-wrecs 7963 df-recs 8024 df-en 8541 df-card 9414 df-ac 9589 |
This theorem is referenced by: numth 9945 numthcor 9967 |
Copyright terms: Public domain | W3C validator |