| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isocoinvid | Structured version Visualization version GIF version | ||
| Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.) |
| Ref | Expression |
|---|---|
| invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
| invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
| invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| invcoisoid.1 | ⊢ 1 = (Id‘𝐶) |
| isocoinvid.o | ⊢ ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) |
| Ref | Expression |
|---|---|
| isocoinvid | ⊢ (𝜑 → (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 3 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 4 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | invisoinvl 17694 | . . 3 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
| 9 | eqid 2731 | . . . . 5 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 10 | 1, 3, 4, 6, 5, 9 | isinv 17664 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)))) |
| 11 | simpl 482 | . . . 4 ⊢ ((((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) | |
| 12 | 10, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)) |
| 13 | 8, 12 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) |
| 14 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 15 | eqid 2731 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 16 | invcoisoid.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 17 | 1, 14, 2, 4, 6, 5 | isohom 17680 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
| 18 | 1, 3, 4, 5, 6, 2 | invf 17672 | . . . . . 6 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| 19 | 18, 7 | ffvelcdmd 7018 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
| 20 | 17, 19 | sseldd 3935 | . . . 4 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
| 21 | 1, 14, 2, 4, 5, 6 | isohom 17680 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
| 22 | 21, 7 | sseldd 3935 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 23 | 1, 14, 15, 16, 9, 4, 6, 5, 20, 22 | issect2 17658 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 24 | isocoinvid.o | . . . . . . 7 ⊢ ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌)) |
| 26 | 25 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) = ⚬ ) |
| 27 | 26 | oveqd 7363 | . . . 4 ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹))) |
| 28 | 27 | eqeq1d 2733 | . . 3 ⊢ (𝜑 → ((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌) ↔ (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 29 | 23, 28 | bitrd 279 | . 2 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 30 | 13, 29 | mpbid 232 | 1 ⊢ (𝜑 → (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 compcco 17170 Catccat 17567 Idccid 17568 Sectcsect 17648 Invcinv 17649 Isociso 17650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-cat 17571 df-cid 17572 df-sect 17651 df-inv 17652 df-iso 17653 |
| This theorem is referenced by: upeu2lem 49059 |
| Copyright terms: Public domain | W3C validator |