MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocoinvid Structured version   Visualization version   GIF version

Theorem isocoinvid 17841
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invcoisoid.1 1 = (Id‘𝐶)
isocoinvid.o = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
Assertion
Ref Expression
isocoinvid (𝜑 → (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌))

Proof of Theorem isocoinvid
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
3 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
4 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
5 invisoinv.x . . . 4 (𝜑𝑋𝐵)
6 invisoinv.y . . . 4 (𝜑𝑌𝐵)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
81, 2, 3, 4, 5, 6, 7invisoinvl 17838 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
9 eqid 2735 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 3, 4, 6, 5, 9isinv 17808 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))))
11 simpl 482 . . . 4 ((((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
1210, 11biimtrdi 253 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
138, 12mpd 15 . 2 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
14 eqid 2735 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
15 eqid 2735 . . . 4 (comp‘𝐶) = (comp‘𝐶)
16 invcoisoid.1 . . . 4 1 = (Id‘𝐶)
171, 14, 2, 4, 6, 5isohom 17824 . . . . 5 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
181, 3, 4, 5, 6, 2invf 17816 . . . . . 6 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
1918, 7ffvelcdmd 7105 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2017, 19sseldd 3996 . . . 4 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
211, 14, 2, 4, 5, 6isohom 17824 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
2221, 7sseldd 3996 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
231, 14, 15, 16, 9, 4, 6, 5, 20, 22issect2 17802 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
24 isocoinvid.o . . . . . . 7 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
2524a1i 11 . . . . . 6 (𝜑 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌))
2625eqcomd 2741 . . . . 5 (𝜑 → (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = )
2726oveqd 7448 . . . 4 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = (𝐹 ((𝑋𝑁𝑌)‘𝐹)))
2827eqeq1d 2737 . . 3 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌) ↔ (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
2923, 28bitrd 279 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
3013, 29mpbid 232 1 (𝜑 → (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cop 4637   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  Idccid 17710  Sectcsect 17792  Invcinv 17793  Isociso 17794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-cat 17713  df-cid 17714  df-sect 17795  df-inv 17796  df-iso 17797
This theorem is referenced by:  upeu2lem  48808
  Copyright terms: Public domain W3C validator