MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocoinvid Structured version   Visualization version   GIF version

Theorem isocoinvid 17702
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invcoisoid.1 1 = (Id‘𝐶)
isocoinvid.o = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
Assertion
Ref Expression
isocoinvid (𝜑 → (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌))

Proof of Theorem isocoinvid
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
3 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
4 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
5 invisoinv.x . . . 4 (𝜑𝑋𝐵)
6 invisoinv.y . . . 4 (𝜑𝑌𝐵)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
81, 2, 3, 4, 5, 6, 7invisoinvl 17699 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
9 eqid 2733 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 3, 4, 6, 5, 9isinv 17669 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))))
11 simpl 482 . . . 4 ((((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
1210, 11biimtrdi 253 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
138, 12mpd 15 . 2 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
14 eqid 2733 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
15 eqid 2733 . . . 4 (comp‘𝐶) = (comp‘𝐶)
16 invcoisoid.1 . . . 4 1 = (Id‘𝐶)
171, 14, 2, 4, 6, 5isohom 17685 . . . . 5 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
181, 3, 4, 5, 6, 2invf 17677 . . . . . 6 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
1918, 7ffvelcdmd 7024 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2017, 19sseldd 3931 . . . 4 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
211, 14, 2, 4, 5, 6isohom 17685 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
2221, 7sseldd 3931 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
231, 14, 15, 16, 9, 4, 6, 5, 20, 22issect2 17663 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
24 isocoinvid.o . . . . . . 7 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
2524a1i 11 . . . . . 6 (𝜑 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌))
2625eqcomd 2739 . . . . 5 (𝜑 → (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = )
2726oveqd 7369 . . . 4 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = (𝐹 ((𝑋𝑁𝑌)‘𝐹)))
2827eqeq1d 2735 . . 3 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌) ↔ (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
2923, 28bitrd 279 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
3013, 29mpbid 232 1 (𝜑 → (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4581   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  compcco 17175  Catccat 17572  Idccid 17573  Sectcsect 17653  Invcinv 17654  Isociso 17655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-cat 17576  df-cid 17577  df-sect 17656  df-inv 17657  df-iso 17658
This theorem is referenced by:  upeu2lem  49153
  Copyright terms: Public domain W3C validator