| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isocoinvid | Structured version Visualization version GIF version | ||
| Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.) |
| Ref | Expression |
|---|---|
| invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
| invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
| invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| invcoisoid.1 | ⊢ 1 = (Id‘𝐶) |
| isocoinvid.o | ⊢ ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) |
| Ref | Expression |
|---|---|
| isocoinvid | ⊢ (𝜑 → (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 3 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 4 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | invisoinvl 17803 | . . 3 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
| 9 | eqid 2735 | . . . . 5 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 10 | 1, 3, 4, 6, 5, 9 | isinv 17773 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)))) |
| 11 | simpl 482 | . . . 4 ⊢ ((((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) | |
| 12 | 10, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)) |
| 13 | 8, 12 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) |
| 14 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 15 | eqid 2735 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 16 | invcoisoid.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 17 | 1, 14, 2, 4, 6, 5 | isohom 17789 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
| 18 | 1, 3, 4, 5, 6, 2 | invf 17781 | . . . . . 6 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| 19 | 18, 7 | ffvelcdmd 7075 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
| 20 | 17, 19 | sseldd 3959 | . . . 4 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
| 21 | 1, 14, 2, 4, 5, 6 | isohom 17789 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
| 22 | 21, 7 | sseldd 3959 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 23 | 1, 14, 15, 16, 9, 4, 6, 5, 20, 22 | issect2 17767 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 24 | isocoinvid.o | . . . . . . 7 ⊢ ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌)) |
| 26 | 25 | eqcomd 2741 | . . . . 5 ⊢ (𝜑 → (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) = ⚬ ) |
| 27 | 26 | oveqd 7422 | . . . 4 ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹))) |
| 28 | 27 | eqeq1d 2737 | . . 3 ⊢ (𝜑 → ((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌) ↔ (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 29 | 23, 28 | bitrd 279 | . 2 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 30 | 13, 29 | mpbid 232 | 1 ⊢ (𝜑 → (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 compcco 17283 Catccat 17676 Idccid 17677 Sectcsect 17757 Invcinv 17758 Isociso 17759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-cat 17680 df-cid 17681 df-sect 17760 df-inv 17761 df-iso 17762 |
| This theorem is referenced by: upeu2lem 48998 |
| Copyright terms: Public domain | W3C validator |