MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocoinvid Structured version   Visualization version   GIF version

Theorem isocoinvid 17697
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invcoisoid.1 1 = (Id‘𝐶)
isocoinvid.o = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
Assertion
Ref Expression
isocoinvid (𝜑 → (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌))

Proof of Theorem isocoinvid
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
3 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
4 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
5 invisoinv.x . . . 4 (𝜑𝑋𝐵)
6 invisoinv.y . . . 4 (𝜑𝑌𝐵)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
81, 2, 3, 4, 5, 6, 7invisoinvl 17694 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
9 eqid 2731 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 3, 4, 6, 5, 9isinv 17664 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))))
11 simpl 482 . . . 4 ((((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
1210, 11biimtrdi 253 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
138, 12mpd 15 . 2 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
14 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
15 eqid 2731 . . . 4 (comp‘𝐶) = (comp‘𝐶)
16 invcoisoid.1 . . . 4 1 = (Id‘𝐶)
171, 14, 2, 4, 6, 5isohom 17680 . . . . 5 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
181, 3, 4, 5, 6, 2invf 17672 . . . . . 6 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
1918, 7ffvelcdmd 7018 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2017, 19sseldd 3935 . . . 4 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
211, 14, 2, 4, 5, 6isohom 17680 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
2221, 7sseldd 3935 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
231, 14, 15, 16, 9, 4, 6, 5, 20, 22issect2 17658 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
24 isocoinvid.o . . . . . . 7 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
2524a1i 11 . . . . . 6 (𝜑 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌))
2625eqcomd 2737 . . . . 5 (𝜑 → (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = )
2726oveqd 7363 . . . 4 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = (𝐹 ((𝑋𝑁𝑌)‘𝐹)))
2827eqeq1d 2733 . . 3 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌) ↔ (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
2923, 28bitrd 279 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
3013, 29mpbid 232 1 (𝜑 → (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169  compcco 17170  Catccat 17567  Idccid 17568  Sectcsect 17648  Invcinv 17649  Isociso 17650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-cat 17571  df-cid 17572  df-sect 17651  df-inv 17652  df-iso 17653
This theorem is referenced by:  upeu2lem  49059
  Copyright terms: Public domain W3C validator