| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isocoinvid | Structured version Visualization version GIF version | ||
| Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.) |
| Ref | Expression |
|---|---|
| invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
| invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
| invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| invcoisoid.1 | ⊢ 1 = (Id‘𝐶) |
| isocoinvid.o | ⊢ ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) |
| Ref | Expression |
|---|---|
| isocoinvid | ⊢ (𝜑 → (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 3 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 4 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | invisoinvl 17699 | . . 3 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
| 9 | eqid 2733 | . . . . 5 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 10 | 1, 3, 4, 6, 5, 9 | isinv 17669 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)))) |
| 11 | simpl 482 | . . . 4 ⊢ ((((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) | |
| 12 | 10, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)) |
| 13 | 8, 12 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) |
| 14 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 15 | eqid 2733 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 16 | invcoisoid.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 17 | 1, 14, 2, 4, 6, 5 | isohom 17685 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
| 18 | 1, 3, 4, 5, 6, 2 | invf 17677 | . . . . . 6 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| 19 | 18, 7 | ffvelcdmd 7024 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
| 20 | 17, 19 | sseldd 3931 | . . . 4 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
| 21 | 1, 14, 2, 4, 5, 6 | isohom 17685 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
| 22 | 21, 7 | sseldd 3931 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 23 | 1, 14, 15, 16, 9, 4, 6, 5, 20, 22 | issect2 17663 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 24 | isocoinvid.o | . . . . . . 7 ⊢ ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌)) |
| 26 | 25 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) = ⚬ ) |
| 27 | 26 | oveqd 7369 | . . . 4 ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹))) |
| 28 | 27 | eqeq1d 2735 | . . 3 ⊢ (𝜑 → ((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌) ↔ (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 29 | 23, 28 | bitrd 279 | . 2 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 30 | 13, 29 | mpbid 232 | 1 ⊢ (𝜑 → (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 compcco 17175 Catccat 17572 Idccid 17573 Sectcsect 17653 Invcinv 17654 Isociso 17655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-cat 17576 df-cid 17577 df-sect 17656 df-inv 17657 df-iso 17658 |
| This theorem is referenced by: upeu2lem 49153 |
| Copyright terms: Public domain | W3C validator |