| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isocoinvid | Structured version Visualization version GIF version | ||
| Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.) |
| Ref | Expression |
|---|---|
| invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
| invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
| invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| invcoisoid.1 | ⊢ 1 = (Id‘𝐶) |
| isocoinvid.o | ⊢ ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) |
| Ref | Expression |
|---|---|
| isocoinvid | ⊢ (𝜑 → (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 3 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 4 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | invisoinvl 17715 | . . 3 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
| 9 | eqid 2729 | . . . . 5 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 10 | 1, 3, 4, 6, 5, 9 | isinv 17685 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)))) |
| 11 | simpl 482 | . . . 4 ⊢ ((((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) | |
| 12 | 10, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)) |
| 13 | 8, 12 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹) |
| 14 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 15 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 16 | invcoisoid.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 17 | 1, 14, 2, 4, 6, 5 | isohom 17701 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
| 18 | 1, 3, 4, 5, 6, 2 | invf 17693 | . . . . . 6 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| 19 | 18, 7 | ffvelcdmd 7023 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
| 20 | 17, 19 | sseldd 3938 | . . . 4 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
| 21 | 1, 14, 2, 4, 5, 6 | isohom 17701 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
| 22 | 21, 7 | sseldd 3938 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 23 | 1, 14, 15, 16, 9, 4, 6, 5, 20, 22 | issect2 17679 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 24 | isocoinvid.o | . . . . . . 7 ⊢ ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ⚬ = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌)) |
| 26 | 25 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) = ⚬ ) |
| 27 | 26 | oveqd 7370 | . . . 4 ⊢ (𝜑 → (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹))) |
| 28 | 27 | eqeq1d 2731 | . . 3 ⊢ (𝜑 → ((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌) ↔ (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 29 | 23, 28 | bitrd 279 | . 2 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌))) |
| 30 | 13, 29 | mpbid 232 | 1 ⊢ (𝜑 → (𝐹 ⚬ ((𝑋𝑁𝑌)‘𝐹)) = ( 1 ‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 compcco 17191 Catccat 17588 Idccid 17589 Sectcsect 17669 Invcinv 17670 Isociso 17671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-cat 17592 df-cid 17593 df-sect 17672 df-inv 17673 df-iso 17674 |
| This theorem is referenced by: upeu2lem 49014 |
| Copyright terms: Public domain | W3C validator |