MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocoinvid Structured version   Visualization version   GIF version

Theorem isocoinvid 17486
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invcoisoid.1 1 = (Id‘𝐶)
isocoinvid.o = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
Assertion
Ref Expression
isocoinvid (𝜑 → (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌))

Proof of Theorem isocoinvid
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
3 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
4 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
5 invisoinv.x . . . 4 (𝜑𝑋𝐵)
6 invisoinv.y . . . 4 (𝜑𝑌𝐵)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
81, 2, 3, 4, 5, 6, 7invisoinvl 17483 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
9 eqid 2739 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 3, 4, 6, 5, 9isinv 17453 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))))
11 simpl 482 . . . 4 ((((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
1210, 11syl6bi 252 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
138, 12mpd 15 . 2 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
14 eqid 2739 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
15 eqid 2739 . . . 4 (comp‘𝐶) = (comp‘𝐶)
16 invcoisoid.1 . . . 4 1 = (Id‘𝐶)
171, 14, 2, 4, 6, 5isohom 17469 . . . . 5 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
181, 3, 4, 5, 6, 2invf 17461 . . . . . 6 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
1918, 7ffvelrnd 6956 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2017, 19sseldd 3926 . . . 4 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
211, 14, 2, 4, 5, 6isohom 17469 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
2221, 7sseldd 3926 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
231, 14, 15, 16, 9, 4, 6, 5, 20, 22issect2 17447 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
24 isocoinvid.o . . . . . . 7 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
2524a1i 11 . . . . . 6 (𝜑 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌))
2625eqcomd 2745 . . . . 5 (𝜑 → (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = )
2726oveqd 7285 . . . 4 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = (𝐹 ((𝑋𝑁𝑌)‘𝐹)))
2827eqeq1d 2741 . . 3 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌) ↔ (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
2923, 28bitrd 278 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌)))
3013, 29mpbid 231 1 (𝜑 → (𝐹 ((𝑋𝑁𝑌)‘𝐹)) = ( 1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cop 4572   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  Hom chom 16954  compcco 16955  Catccat 17354  Idccid 17355  Sectcsect 17437  Invcinv 17438  Isociso 17439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-cat 17358  df-cid 17359  df-sect 17440  df-inv 17441  df-iso 17442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator