Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version |
Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | eqid 2758 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2758 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | issubrg 19603 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
5 | 4 | simplbi 501 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
6 | 5 | simprd 499 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
7 | 1, 6 | eqeltrid 2856 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 ↾s cress 16542 1rcur 19319 Ringcrg 19365 SubRingcsubrg 19599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-subrg 19601 |
This theorem is referenced by: subrgcrng 19607 subrgsubg 19609 subrg1 19613 subrgmcl 19615 subrgsubm 19616 subrguss 19618 subrginv 19619 subrgunit 19621 subrgugrp 19622 issubdrg 19628 subsubrg 19629 resrhm 19632 subdrgint 19650 abvres 19678 sralmod 20027 subrgnzr 20109 gzrngunitlem 20231 gzrngunit 20232 issubassa3 20630 subrgpsr 20747 mplring 20783 subrgmvrf 20794 subrgascl 20827 subrgasclcl 20828 evlssca 20852 evlsvar 20853 evlsgsumadd 20854 evlsvarpw 20857 mpfconst 20864 mpfproj 20865 mpfsubrg 20866 gsumply1subr 20958 ply1ring 20972 evls1sca 21042 evls1gsumadd 21043 evls1varpw 21046 dmatcrng 21202 scmatcrng 21221 scmatsgrp1 21222 scmatsrng1 21223 scmatmhm 21234 scmatrhm 21235 scmatrngiso 21236 m2cpmrhm 21446 isclmp 23798 reefgim 25144 amgmlem 25674 cntrcrng 30848 evlsscaval 39778 evlsvarval 39779 evlsbagval 39780 mhphf 39790 amgmwlem 45721 |
Copyright terms: Public domain | W3C validator |