MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgring Structured version   Visualization version   GIF version

Theorem subrgring 20027
Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrgring.1 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subrgring (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)

Proof of Theorem subrgring
StepHypRef Expression
1 subrgring.1 . 2 𝑆 = (𝑅s 𝐴)
2 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2738 . . . . 5 (1r𝑅) = (1r𝑅)
42, 3issubrg 20024 . . . 4 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)))
54simplbi 498 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring))
65simprd 496 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑅s 𝐴) ∈ Ring)
71, 6eqeltrid 2843 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  1rcur 19737  Ringcrg 19783  SubRingcsubrg 20020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-subrg 20022
This theorem is referenced by:  subrgcrng  20028  subrgsubg  20030  subrg1  20034  subrgmcl  20036  subrgsubm  20037  subrguss  20039  subrginv  20040  subrgunit  20042  subrgugrp  20043  issubdrg  20049  subsubrg  20050  resrhm  20053  subdrgint  20071  abvres  20099  sralmod  20457  subrgnzr  20539  gzrngunitlem  20663  gzrngunit  20664  issubassa3  21072  subrgpsr  21188  mplring  21224  subrgmvrf  21235  subrgascl  21274  subrgasclcl  21275  evlssca  21299  evlsvar  21300  evlsgsumadd  21301  evlsvarpw  21304  mpfconst  21311  mpfproj  21312  mpfsubrg  21313  gsumply1subr  21405  ply1ring  21419  evls1sca  21489  evls1gsumadd  21490  evls1varpw  21493  dmatcrng  21651  scmatcrng  21670  scmatsgrp1  21671  scmatsrng1  21672  scmatmhm  21683  scmatrhm  21684  scmatrngiso  21685  m2cpmrhm  21895  isclmp  24260  reefgim  25609  amgmlem  26139  cntrcrng  31322  evlsscaval  40273  evlsvarval  40274  evlsbagval  40275  mhphf  40285  amgmwlem  46506
  Copyright terms: Public domain W3C validator