![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version |
Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2735 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | issubrg 20588 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
5 | 4 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
6 | 5 | simprd 495 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
7 | 1, 6 | eqeltrid 2843 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 1rcur 20199 Ringcrg 20251 SubRingcsubrg 20586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-subrg 20587 |
This theorem is referenced by: subrgcrng 20592 subrgsubg 20594 subrg1 20599 subrgsubm 20602 subrguss 20604 subrginv 20605 subrgunit 20607 subrgugrp 20608 subrgnzr 20611 subsubrg 20615 resrhm 20618 resrhm2b 20619 issubdrg 20798 imadrhmcl 20815 subdrgint 20821 abvres 20849 sralmod 21212 ring2idlqus 21337 gzrngunitlem 21468 gzrngunit 21469 issubassa3 21904 subrgpsr 22016 mplring 22057 subrgmvrf 22070 subrgascl 22108 subrgasclcl 22109 evlssca 22131 evlsvar 22132 evlsgsumadd 22133 evlsvarpw 22136 mpfconst 22143 mpfproj 22144 mpfsubrg 22145 gsumply1subr 22251 ply1ring 22265 evls1sca 22343 evls1gsumadd 22344 evls1varpw 22347 evls1varpwval 22388 evls1fpws 22389 evls1addd 22391 evls1muld 22392 asclply1subcl 22394 evls1maplmhm 22397 dmatcrng 22524 scmatcrng 22543 scmatsgrp1 22544 scmatsrng1 22545 scmatmhm 22556 scmatrhm 22557 m2cpmrhm 22768 isclmp 25144 reefgim 26509 amgmlem 27048 cntrcrng 33056 ressply10g 33572 evls1subd 33577 evls1fldgencl 33695 0ringirng 33704 ply1annnr 33711 irngnminplynz 33720 algextdeglem6 33728 imacrhmcl 42501 evlsscaval 42551 evlsvarval 42552 evlsbagval 42553 evlsmaprhm 42557 amgmwlem 49033 |
Copyright terms: Public domain | W3C validator |