| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version | ||
| Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 2, 3 | issubrg 20480 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
| 5 | 4 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
| 6 | 5 | simprd 495 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 7 | 1, 6 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 1rcur 20090 Ringcrg 20142 SubRingcsubrg 20478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-subrg 20479 |
| This theorem is referenced by: subrgcrng 20484 subrgsubg 20486 subrg1 20491 subrgsubm 20494 subrguss 20496 subrginv 20497 subrgunit 20499 subrgugrp 20500 subrgnzr 20503 subsubrg 20507 resrhm 20510 resrhm2b 20511 issubdrg 20689 imadrhmcl 20706 subdrgint 20712 abvres 20740 sralmod 21094 ring2idlqus 21219 gzrngunitlem 21349 gzrngunit 21350 issubassa3 21775 subrgpsr 21887 mplring 21928 subrgmvrf 21941 subrgascl 21973 subrgasclcl 21974 evlssca 21996 evlsvar 21997 evlsgsumadd 21998 evlsvarpw 22001 mpfconst 22008 mpfproj 22009 mpfsubrg 22010 gsumply1subr 22118 ply1ring 22132 evls1sca 22210 evls1gsumadd 22211 evls1varpw 22214 evls1varpwval 22255 evls1fpws 22256 evls1addd 22258 evls1muld 22259 asclply1subcl 22261 evls1maplmhm 22264 dmatcrng 22389 scmatcrng 22408 scmatsgrp1 22409 scmatsrng1 22410 scmatmhm 22421 scmatrhm 22422 m2cpmrhm 22633 isclmp 24997 reefgim 26360 amgmlem 26900 cntrcrng 33010 ressply1evls1 33534 ressply10g 33536 evls1subd 33541 vr1nz 33559 evls1fldgencl 33665 0ringirng 33684 ply1annnr 33693 irngnminplynz 33702 minplyelirng 33705 algextdeglem6 33712 imacrhmcl 42502 evlsscaval 42552 evlsvarval 42553 evlsbagval 42554 evlsmaprhm 42558 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |