![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version |
Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2740 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | issubrg 20599 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
5 | 4 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
6 | 5 | simprd 495 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
7 | 1, 6 | eqeltrid 2848 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 1rcur 20208 Ringcrg 20260 SubRingcsubrg 20595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-subrg 20597 |
This theorem is referenced by: subrgcrng 20603 subrgsubg 20605 subrg1 20610 subrgsubm 20613 subrguss 20615 subrginv 20616 subrgunit 20618 subrgugrp 20619 subrgnzr 20622 subsubrg 20626 resrhm 20629 resrhm2b 20630 issubdrg 20803 imadrhmcl 20820 subdrgint 20826 abvres 20854 sralmod 21217 ring2idlqus 21342 gzrngunitlem 21473 gzrngunit 21474 issubassa3 21909 subrgpsr 22021 mplring 22062 subrgmvrf 22075 subrgascl 22113 subrgasclcl 22114 evlssca 22136 evlsvar 22137 evlsgsumadd 22138 evlsvarpw 22141 mpfconst 22148 mpfproj 22149 mpfsubrg 22150 gsumply1subr 22256 ply1ring 22270 evls1sca 22348 evls1gsumadd 22349 evls1varpw 22352 evls1varpwval 22393 evls1fpws 22394 evls1addd 22396 evls1muld 22397 asclply1subcl 22399 evls1maplmhm 22402 dmatcrng 22529 scmatcrng 22548 scmatsgrp1 22549 scmatsrng1 22550 scmatmhm 22561 scmatrhm 22562 m2cpmrhm 22773 isclmp 25149 reefgim 26512 amgmlem 27051 cntrcrng 33046 ressply10g 33557 evls1subd 33562 evls1fldgencl 33680 0ringirng 33689 ply1annnr 33696 irngnminplynz 33705 algextdeglem6 33713 imacrhmcl 42469 evlsscaval 42519 evlsvarval 42520 evlsbagval 42521 evlsmaprhm 42525 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |