Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version |
Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | issubrg 19939 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
5 | 4 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
6 | 5 | simprd 495 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
7 | 1, 6 | eqeltrid 2843 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 1rcur 19652 Ringcrg 19698 SubRingcsubrg 19935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-subrg 19937 |
This theorem is referenced by: subrgcrng 19943 subrgsubg 19945 subrg1 19949 subrgmcl 19951 subrgsubm 19952 subrguss 19954 subrginv 19955 subrgunit 19957 subrgugrp 19958 issubdrg 19964 subsubrg 19965 resrhm 19968 subdrgint 19986 abvres 20014 sralmod 20370 subrgnzr 20452 gzrngunitlem 20575 gzrngunit 20576 issubassa3 20982 subrgpsr 21098 mplring 21134 subrgmvrf 21145 subrgascl 21184 subrgasclcl 21185 evlssca 21209 evlsvar 21210 evlsgsumadd 21211 evlsvarpw 21214 mpfconst 21221 mpfproj 21222 mpfsubrg 21223 gsumply1subr 21315 ply1ring 21329 evls1sca 21399 evls1gsumadd 21400 evls1varpw 21403 dmatcrng 21559 scmatcrng 21578 scmatsgrp1 21579 scmatsrng1 21580 scmatmhm 21591 scmatrhm 21592 scmatrngiso 21593 m2cpmrhm 21803 isclmp 24166 reefgim 25514 amgmlem 26044 cntrcrng 31224 evlsscaval 40196 evlsvarval 40197 evlsbagval 40198 mhphf 40208 amgmwlem 46392 |
Copyright terms: Public domain | W3C validator |