| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version | ||
| Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 2, 3 | issubrg 20474 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
| 5 | 4 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
| 6 | 5 | simprd 495 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 7 | 1, 6 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 1rcur 20084 Ringcrg 20136 SubRingcsubrg 20472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-subrg 20473 |
| This theorem is referenced by: subrgcrng 20478 subrgsubg 20480 subrg1 20485 subrgsubm 20488 subrguss 20490 subrginv 20491 subrgunit 20493 subrgugrp 20494 subrgnzr 20497 subsubrg 20501 resrhm 20504 resrhm2b 20505 issubdrg 20683 imadrhmcl 20700 subdrgint 20706 abvres 20734 sralmod 21109 ring2idlqus 21234 gzrngunitlem 21357 gzrngunit 21358 issubassa3 21791 subrgpsr 21903 mplring 21944 subrgmvrf 21957 subrgascl 21989 subrgasclcl 21990 evlssca 22012 evlsvar 22013 evlsgsumadd 22014 evlsvarpw 22017 mpfconst 22024 mpfproj 22025 mpfsubrg 22026 gsumply1subr 22134 ply1ring 22148 evls1sca 22226 evls1gsumadd 22227 evls1varpw 22230 evls1varpwval 22271 evls1fpws 22272 evls1addd 22274 evls1muld 22275 asclply1subcl 22277 evls1maplmhm 22280 dmatcrng 22405 scmatcrng 22424 scmatsgrp1 22425 scmatsrng1 22426 scmatmhm 22437 scmatrhm 22438 m2cpmrhm 22649 isclmp 25013 reefgim 26376 amgmlem 26916 cntrcrng 33036 ressply1evls1 33513 ressply10g 33515 evls1subd 33520 vr1nz 33538 evls1fldgencl 33644 0ringirng 33663 ply1annnr 33672 irngnminplynz 33681 minplyelirng 33684 algextdeglem6 33691 imacrhmcl 42490 evlsscaval 42540 evlsvarval 42541 evlsbagval 42542 evlsmaprhm 42546 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |