| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version | ||
| Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 2, 3 | issubrg 20536 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
| 5 | 4 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
| 6 | 5 | simprd 495 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 7 | 1, 6 | eqeltrid 2839 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 1rcur 20146 Ringcrg 20198 SubRingcsubrg 20534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-subrg 20535 |
| This theorem is referenced by: subrgcrng 20540 subrgsubg 20542 subrg1 20547 subrgsubm 20550 subrguss 20552 subrginv 20553 subrgunit 20555 subrgugrp 20556 subrgnzr 20559 subsubrg 20563 resrhm 20566 resrhm2b 20567 issubdrg 20745 imadrhmcl 20762 subdrgint 20768 abvres 20796 sralmod 21150 ring2idlqus 21275 gzrngunitlem 21405 gzrngunit 21406 issubassa3 21831 subrgpsr 21943 mplring 21984 subrgmvrf 21997 subrgascl 22029 subrgasclcl 22030 evlssca 22052 evlsvar 22053 evlsgsumadd 22054 evlsvarpw 22057 mpfconst 22064 mpfproj 22065 mpfsubrg 22066 gsumply1subr 22174 ply1ring 22188 evls1sca 22266 evls1gsumadd 22267 evls1varpw 22270 evls1varpwval 22311 evls1fpws 22312 evls1addd 22314 evls1muld 22315 asclply1subcl 22317 evls1maplmhm 22320 dmatcrng 22445 scmatcrng 22464 scmatsgrp1 22465 scmatsrng1 22466 scmatmhm 22477 scmatrhm 22478 m2cpmrhm 22689 isclmp 25053 reefgim 26417 amgmlem 26957 cntrcrng 33069 ressply1evls1 33583 ressply10g 33585 evls1subd 33590 vr1nz 33608 evls1fldgencl 33716 0ringirng 33735 ply1annnr 33742 irngnminplynz 33751 minplyelirng 33754 algextdeglem6 33761 imacrhmcl 42512 evlsscaval 42562 evlsvarval 42563 evlsbagval 42564 evlsmaprhm 42568 amgmwlem 49646 |
| Copyright terms: Public domain | W3C validator |