| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version | ||
| Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2733 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 2, 3 | issubrg 20490 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
| 5 | 4 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
| 6 | 5 | simprd 495 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 7 | 1, 6 | eqeltrid 2837 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 ↾s cress 17145 1rcur 20103 Ringcrg 20155 SubRingcsubrg 20488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-subrg 20489 |
| This theorem is referenced by: subrgcrng 20494 subrgsubg 20496 subrg1 20501 subrgsubm 20504 subrguss 20506 subrginv 20507 subrgunit 20509 subrgugrp 20510 subrgnzr 20513 subsubrg 20517 resrhm 20520 resrhm2b 20521 issubdrg 20699 imadrhmcl 20716 subdrgint 20722 abvres 20750 sralmod 21125 ring2idlqus 21250 gzrngunitlem 21373 gzrngunit 21374 issubassa3 21807 subrgpsr 21918 mplring 21959 subrgmvrf 21972 subrgascl 22004 subrgasclcl 22005 evlssca 22027 evlsvar 22028 evlsgsumadd 22029 evlsvarpw 22032 mpfconst 22039 mpfproj 22040 mpfsubrg 22041 gsumply1subr 22149 ply1ring 22163 evls1sca 22241 evls1gsumadd 22242 evls1varpw 22245 evls1varpwval 22286 evls1fpws 22287 evls1addd 22289 evls1muld 22290 asclply1subcl 22292 evls1maplmhm 22295 dmatcrng 22420 scmatcrng 22439 scmatsgrp1 22440 scmatsrng1 22441 scmatmhm 22452 scmatrhm 22453 m2cpmrhm 22664 isclmp 25027 reefgim 26390 amgmlem 26930 cntrcrng 33059 ressply1evls1 33537 ressply10g 33539 evls1subd 33544 evls1monply1 33551 vr1nz 33563 evls1fldgencl 33706 0ringirng 33725 extdgfialglem2 33729 ply1annnr 33739 irngnminplynz 33748 minplyelirng 33751 algextdeglem6 33758 imacrhmcl 42635 evlsscaval 42685 evlsvarval 42686 evlsbagval 42687 evlsmaprhm 42691 amgmwlem 49930 |
| Copyright terms: Public domain | W3C validator |