Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version |
Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 2, 3 | issubrg 20024 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
5 | 4 | simplbi 498 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
6 | 5 | simprd 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
7 | 1, 6 | eqeltrid 2843 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 1rcur 19737 Ringcrg 19783 SubRingcsubrg 20020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-subrg 20022 |
This theorem is referenced by: subrgcrng 20028 subrgsubg 20030 subrg1 20034 subrgmcl 20036 subrgsubm 20037 subrguss 20039 subrginv 20040 subrgunit 20042 subrgugrp 20043 issubdrg 20049 subsubrg 20050 resrhm 20053 subdrgint 20071 abvres 20099 sralmod 20457 subrgnzr 20539 gzrngunitlem 20663 gzrngunit 20664 issubassa3 21072 subrgpsr 21188 mplring 21224 subrgmvrf 21235 subrgascl 21274 subrgasclcl 21275 evlssca 21299 evlsvar 21300 evlsgsumadd 21301 evlsvarpw 21304 mpfconst 21311 mpfproj 21312 mpfsubrg 21313 gsumply1subr 21405 ply1ring 21419 evls1sca 21489 evls1gsumadd 21490 evls1varpw 21493 dmatcrng 21651 scmatcrng 21670 scmatsgrp1 21671 scmatsrng1 21672 scmatmhm 21683 scmatrhm 21684 scmatrngiso 21685 m2cpmrhm 21895 isclmp 24260 reefgim 25609 amgmlem 26139 cntrcrng 31322 evlsscaval 40273 evlsvarval 40274 evlsbagval 40275 mhphf 40285 amgmwlem 46506 |
Copyright terms: Public domain | W3C validator |