| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgring | Structured version Visualization version GIF version | ||
| Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 2, 3 | issubrg 20487 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
| 5 | 4 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
| 6 | 5 | simprd 495 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 7 | 1, 6 | eqeltrid 2835 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 1rcur 20100 Ringcrg 20152 SubRingcsubrg 20485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-subrg 20486 |
| This theorem is referenced by: subrgcrng 20491 subrgsubg 20493 subrg1 20498 subrgsubm 20501 subrguss 20503 subrginv 20504 subrgunit 20506 subrgugrp 20507 subrgnzr 20510 subsubrg 20514 resrhm 20517 resrhm2b 20518 issubdrg 20696 imadrhmcl 20713 subdrgint 20719 abvres 20747 sralmod 21122 ring2idlqus 21247 gzrngunitlem 21370 gzrngunit 21371 issubassa3 21804 subrgpsr 21916 mplring 21957 subrgmvrf 21970 subrgascl 22002 subrgasclcl 22003 evlssca 22025 evlsvar 22026 evlsgsumadd 22027 evlsvarpw 22030 mpfconst 22037 mpfproj 22038 mpfsubrg 22039 gsumply1subr 22147 ply1ring 22161 evls1sca 22239 evls1gsumadd 22240 evls1varpw 22243 evls1varpwval 22284 evls1fpws 22285 evls1addd 22287 evls1muld 22288 asclply1subcl 22290 evls1maplmhm 22293 dmatcrng 22418 scmatcrng 22437 scmatsgrp1 22438 scmatsrng1 22439 scmatmhm 22450 scmatrhm 22451 m2cpmrhm 22662 isclmp 25025 reefgim 26388 amgmlem 26928 cntrcrng 33048 ressply1evls1 33526 ressply10g 33528 evls1subd 33533 evls1monply1 33540 vr1nz 33552 evls1fldgencl 33681 0ringirng 33700 extdgfialglem2 33704 ply1annnr 33714 irngnminplynz 33723 minplyelirng 33726 algextdeglem6 33733 imacrhmcl 42553 evlsscaval 42603 evlsvarval 42604 evlsbagval 42605 evlsmaprhm 42609 amgmwlem 49840 |
| Copyright terms: Public domain | W3C validator |