MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgid Structured version   Visualization version   GIF version

Theorem subrgid 20538
Description: Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypothesis
Ref Expression
subrgss.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
subrgid (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))

Proof of Theorem subrgid
StepHypRef Expression
1 id 22 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
2 subrgss.1 . . . 4 𝐵 = (Base‘𝑅)
32ressid 17270 . . 3 (𝑅 ∈ Ring → (𝑅s 𝐵) = 𝑅)
43, 1eqeltrd 2835 . 2 (𝑅 ∈ Ring → (𝑅s 𝐵) ∈ Ring)
5 eqid 2736 . . . 4 (1r𝑅) = (1r𝑅)
62, 5ringidcl 20230 . . 3 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
7 ssid 3986 . . 3 𝐵𝐵
86, 7jctil 519 . 2 (𝑅 ∈ Ring → (𝐵𝐵 ∧ (1r𝑅) ∈ 𝐵))
92, 5issubrg 20536 . 2 (𝐵 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐵) ∈ Ring) ∧ (𝐵𝐵 ∧ (1r𝑅) ∈ 𝐵)))
101, 4, 8, 9syl21anbrc 1345 1 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  1rcur 20146  Ringcrg 20198  SubRingcsubrg 20534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mgp 20106  df-ur 20147  df-ring 20200  df-subrg 20535
This theorem is referenced by:  subrgmre  20562  rnrhmsubrg  20570  rgspnval  20577  rgspncl  20578  sdrgid  20757  rlmlmod  21166  ring2idlqus  21275  rlmassa  21836  aspval  21838  evlrhm  22059  evlsscasrng  22060  evlsca  22061  evlsvarsrng  22062  evlvar  22063  mpfsubrg  22066  evl1sca  22277  evl1var  22279  evls1scasrng  22282  evls1varsrng  22283  pf1subrg  22291  pf1ind  22298  evl1gsumadd  22301  evl1varpw  22304  ressply1evl  22313  evl1maprhm  22322  rlmnlm  24632  rlmbn  25318  dvply2  26251  dvnply  26253  taylply  26334  evl1fpws  33582  rgmoddimOLD  33655  fldextid  33706  cos9thpiminply  33827  riccrng1  42511  evlsevl  42561  evlvvval  42563  evlvvvallem  42564  mhphf4  42590  mzpmfp  42737
  Copyright terms: Public domain W3C validator