MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgid Structured version   Visualization version   GIF version

Theorem subrgid 20477
Description: Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypothesis
Ref Expression
subrgss.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
subrgid (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))

Proof of Theorem subrgid
StepHypRef Expression
1 id 22 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
2 subrgss.1 . . . 4 𝐵 = (Base‘𝑅)
32ressid 17174 . . 3 (𝑅 ∈ Ring → (𝑅s 𝐵) = 𝑅)
43, 1eqeltrd 2828 . 2 (𝑅 ∈ Ring → (𝑅s 𝐵) ∈ Ring)
5 eqid 2729 . . . 4 (1r𝑅) = (1r𝑅)
62, 5ringidcl 20169 . . 3 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
7 ssid 3960 . . 3 𝐵𝐵
86, 7jctil 519 . 2 (𝑅 ∈ Ring → (𝐵𝐵 ∧ (1r𝑅) ∈ 𝐵))
92, 5issubrg 20475 . 2 (𝐵 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐵) ∈ Ring) ∧ (𝐵𝐵 ∧ (1r𝑅) ∈ 𝐵)))
101, 4, 8, 9syl21anbrc 1345 1 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3905  cfv 6486  (class class class)co 7353  Basecbs 17139  s cress 17160  1rcur 20085  Ringcrg 20137  SubRingcsubrg 20473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mgp 20045  df-ur 20086  df-ring 20139  df-subrg 20474
This theorem is referenced by:  subrgmre  20501  rnrhmsubrg  20509  rgspnval  20516  rgspncl  20517  sdrgid  20696  rlmlmod  21126  ring2idlqus  21235  rlmassa  21797  aspval  21799  evlrhm  22020  evlsscasrng  22021  evlsca  22022  evlsvarsrng  22023  evlvar  22024  mpfsubrg  22027  evl1sca  22238  evl1var  22240  evls1scasrng  22243  evls1varsrng  22244  pf1subrg  22252  pf1ind  22259  evl1gsumadd  22262  evl1varpw  22265  ressply1evl  22274  evl1maprhm  22283  rlmnlm  24593  rlmbn  25278  dvply2  26211  dvnply  26213  taylply  26294  evl1fpws  33518  rgmoddimOLD  33596  fldextid  33645  cos9thpiminply  33774  riccrng1  42514  evlsevl  42564  evlvvval  42566  evlvvvallem  42567  mhphf4  42593  mzpmfp  42740
  Copyright terms: Public domain W3C validator