| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrg1cl | Structured version Visualization version GIF version | ||
| Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrg1cl.a | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| subrg1cl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | subrg1cl.a | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20456 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 1rcur 20066 Ringcrg 20118 SubRingcsubrg 20454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-subrg 20455 |
| This theorem is referenced by: subrg1 20467 subrgsubm 20470 issubrg2 20477 subrgint 20480 subsubrg 20483 primefld1cl 20692 zsssubrg 21332 issubassa2 21799 subrgpsr 21885 mplassa 21929 mplbas2 21947 ply1assa 22082 asclply1subcl 22259 evls1maprhm 22261 isclmp 24995 taylply2 26273 taylply2OLD 26274 subrgchr 33177 0ringsubrg 33191 fldgensdrg 33253 primefldgen1 33260 ressply1evls1 33500 drgextlsp 33560 fldgenfldext 33635 evls1fldgencl 33637 fldextrspundgdvdslem 33647 fldextrspundgdvds 33648 ply1annnr 33670 algextdeglem4 33687 rtelextdg2lem 33693 evlsmaprhm 42543 cnsrexpcl 43138 rngunsnply 43142 |
| Copyright terms: Public domain | W3C validator |