| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrg1cl | Structured version Visualization version GIF version | ||
| Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrg1cl.a | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| subrg1cl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | subrg1cl.a | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20486 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 1rcur 20099 Ringcrg 20151 SubRingcsubrg 20484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-subrg 20485 |
| This theorem is referenced by: subrg1 20497 subrgsubm 20500 issubrg2 20507 subrgint 20510 subsubrg 20513 primefld1cl 20722 zsssubrg 21362 issubassa2 21829 subrgpsr 21915 mplassa 21959 mplbas2 21977 ply1assa 22112 asclply1subcl 22289 evls1maprhm 22291 isclmp 25024 taylply2 26302 taylply2OLD 26303 subrgchr 33204 0ringsubrg 33218 fldgensdrg 33280 primefldgen1 33287 ressply1evls1 33528 drgextlsp 33606 fldgenfldext 33681 evls1fldgencl 33683 fldextrspundgdvdslem 33693 fldextrspundgdvds 33694 ply1annnr 33716 algextdeglem4 33733 rtelextdg2lem 33739 evlsmaprhm 42611 cnsrexpcl 43206 rngunsnply 43210 |
| Copyright terms: Public domain | W3C validator |