MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1cl Structured version   Visualization version   GIF version

Theorem subrg1cl 20545
Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrg1cl.a 1 = (1r𝑅)
Assertion
Ref Expression
subrg1cl (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)

Proof of Theorem subrg1cl
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 subrg1cl.a . . . 4 1 = (1r𝑅)
31, 2issubrg 20536 . . 3 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1𝐴)))
43simprbi 496 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1𝐴))
54simprd 495 1 (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  1rcur 20146  Ringcrg 20198  SubRingcsubrg 20534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-subrg 20535
This theorem is referenced by:  subrg1  20547  subrgsubm  20550  issubrg2  20557  subrgint  20560  subsubrg  20563  primefld1cl  20772  zsssubrg  21398  issubassa2  21857  subrgpsr  21943  mplassa  21987  mplbas2  22005  ply1assa  22140  asclply1subcl  22317  evls1maprhm  22319  isclmp  25053  taylply2  26332  taylply2OLD  26333  subrgchr  33237  0ringsubrg  33251  fldgensdrg  33313  primefldgen1  33320  ressply1evls1  33583  drgextlsp  33638  fldgenfldext  33714  evls1fldgencl  33716  fldextrspundgdvdslem  33726  fldextrspundgdvds  33727  ply1annnr  33742  algextdeglem4  33759  rtelextdg2lem  33765  evlsmaprhm  42560  cnsrexpcl  43156  rngunsnply  43160
  Copyright terms: Public domain W3C validator