![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrg1cl | Structured version Visualization version GIF version |
Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrg1cl.a | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
subrg1cl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | subrg1cl.a | . . . 4 ⊢ 1 = (1r‘𝑅) | |
3 | 1, 2 | issubrg 20588 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴))) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴)) |
5 | 4 | simprd 495 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 1rcur 20199 Ringcrg 20251 SubRingcsubrg 20586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-subrg 20587 |
This theorem is referenced by: subrg1 20599 subrgsubm 20602 issubrg2 20609 subrgint 20612 subsubrg 20615 primefld1cl 20825 zsssubrg 21461 issubassa2 21930 subrgpsr 22016 mplassa 22060 mplbas2 22078 ply1assa 22217 asclply1subcl 22394 evls1maprhm 22396 isclmp 25144 taylply2 26424 taylply2OLD 26425 subrgchr 33227 0ringsubrg 33238 fldgensdrg 33296 primefldgen1 33303 drgextlsp 33623 fldgenfldext 33693 evls1fldgencl 33695 ply1annnr 33711 algextdeglem4 33726 rtelextdg2lem 33732 evlsmaprhm 42557 cnsrexpcl 43154 rngunsnply 43158 |
Copyright terms: Public domain | W3C validator |