Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrg1cl | Structured version Visualization version GIF version |
Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrg1cl.a | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
subrg1cl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | subrg1cl.a | . . . 4 ⊢ 1 = (1r‘𝑅) | |
3 | 1, 2 | issubrg 20024 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴))) |
4 | 3 | simprbi 497 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴)) |
5 | 4 | simprd 496 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 1rcur 19737 Ringcrg 19783 SubRingcsubrg 20020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-subrg 20022 |
This theorem is referenced by: subrg1 20034 subrgsubm 20037 issubrg2 20044 subrgint 20046 subsubrg 20050 primefld1cl 20075 zsssubrg 20656 issubassa2 21096 subrgpsr 21188 mplassa 21227 mplbas2 21243 ply1assa 21370 isclmp 24260 taylply2 25527 subrgchr 31491 drgextlsp 31681 evlsbagval 40275 cnsrexpcl 40990 rngunsnply 40998 |
Copyright terms: Public domain | W3C validator |