MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1cl Structured version   Visualization version   GIF version

Theorem subrg1cl 20495
Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrg1cl.a 1 = (1r𝑅)
Assertion
Ref Expression
subrg1cl (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)

Proof of Theorem subrg1cl
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 subrg1cl.a . . . 4 1 = (1r𝑅)
31, 2issubrg 20486 . . 3 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1𝐴)))
43simprbi 496 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1𝐴))
54simprd 495 1 (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  1rcur 20099  Ringcrg 20151  SubRingcsubrg 20484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-subrg 20485
This theorem is referenced by:  subrg1  20497  subrgsubm  20500  issubrg2  20507  subrgint  20510  subsubrg  20513  primefld1cl  20722  zsssubrg  21362  issubassa2  21829  subrgpsr  21915  mplassa  21959  mplbas2  21977  ply1assa  22112  asclply1subcl  22289  evls1maprhm  22291  isclmp  25024  taylply2  26302  taylply2OLD  26303  subrgchr  33204  0ringsubrg  33218  fldgensdrg  33280  primefldgen1  33287  ressply1evls1  33528  drgextlsp  33606  fldgenfldext  33681  evls1fldgencl  33683  fldextrspundgdvdslem  33693  fldextrspundgdvds  33694  ply1annnr  33716  algextdeglem4  33733  rtelextdg2lem  33739  evlsmaprhm  42611  cnsrexpcl  43206  rngunsnply  43210
  Copyright terms: Public domain W3C validator