| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrg1cl | Structured version Visualization version GIF version | ||
| Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrg1cl.a | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| subrg1cl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | subrg1cl.a | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20491 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴)) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 1rcur 20101 Ringcrg 20153 SubRingcsubrg 20489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-subrg 20490 |
| This theorem is referenced by: subrg1 20502 subrgsubm 20505 issubrg2 20512 subrgint 20515 subsubrg 20518 primefld1cl 20727 zsssubrg 21367 issubassa2 21834 subrgpsr 21920 mplassa 21964 mplbas2 21982 ply1assa 22117 asclply1subcl 22294 evls1maprhm 22296 isclmp 25030 taylply2 26308 taylply2OLD 26309 subrgchr 33204 0ringsubrg 33218 fldgensdrg 33280 primefldgen1 33287 ressply1evls1 33527 drgextlsp 33582 fldgenfldext 33656 evls1fldgencl 33658 fldextrspundgdvdslem 33668 fldextrspundgdvds 33669 ply1annnr 33686 algextdeglem4 33703 rtelextdg2lem 33709 evlsmaprhm 42551 cnsrexpcl 43147 rngunsnply 43151 |
| Copyright terms: Public domain | W3C validator |