MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1cl Structured version   Visualization version   GIF version

Theorem subrg1cl 20032
Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrg1cl.a 1 = (1r𝑅)
Assertion
Ref Expression
subrg1cl (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)

Proof of Theorem subrg1cl
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 subrg1cl.a . . . 4 1 = (1r𝑅)
31, 2issubrg 20024 . . 3 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1𝐴)))
43simprbi 497 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1𝐴))
54simprd 496 1 (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  1rcur 19737  Ringcrg 19783  SubRingcsubrg 20020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-subrg 20022
This theorem is referenced by:  subrg1  20034  subrgsubm  20037  issubrg2  20044  subrgint  20046  subsubrg  20050  primefld1cl  20075  zsssubrg  20656  issubassa2  21096  subrgpsr  21188  mplassa  21227  mplbas2  21243  ply1assa  21370  isclmp  24260  taylply2  25527  subrgchr  31491  drgextlsp  31681  evlsbagval  40275  cnsrexpcl  40990  rngunsnply  40998
  Copyright terms: Public domain W3C validator