|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > subrg1cl | Structured version Visualization version GIF version | ||
| Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| subrg1cl.a | ⊢ 1 = (1r‘𝑅) | 
| Ref | Expression | 
|---|---|
| subrg1cl | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | subrg1cl.a | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20572 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴))) | 
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝐴)) | 
| 5 | 4 | simprd 495 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 ↾s cress 17275 1rcur 20179 Ringcrg 20231 SubRingcsubrg 20570 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-subrg 20571 | 
| This theorem is referenced by: subrg1 20583 subrgsubm 20586 issubrg2 20593 subrgint 20596 subsubrg 20599 primefld1cl 20809 zsssubrg 21444 issubassa2 21913 subrgpsr 21999 mplassa 22043 mplbas2 22061 ply1assa 22202 asclply1subcl 22379 evls1maprhm 22381 isclmp 25131 taylply2 26410 taylply2OLD 26411 subrgchr 33242 0ringsubrg 33256 fldgensdrg 33317 primefldgen1 33324 drgextlsp 33645 fldgenfldext 33719 evls1fldgencl 33721 fldextrspundgdvdslem 33731 fldextrspundgdvds 33732 ply1annnr 33747 algextdeglem4 33762 rtelextdg2lem 33768 evlsmaprhm 42585 cnsrexpcl 43182 rngunsnply 43186 | 
| Copyright terms: Public domain | W3C validator |