MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1cl Structured version   Visualization version   GIF version

Theorem subrg1cl 20608
Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrg1cl.a 1 = (1r𝑅)
Assertion
Ref Expression
subrg1cl (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)

Proof of Theorem subrg1cl
StepHypRef Expression
1 eqid 2740 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 subrg1cl.a . . . 4 1 = (1r𝑅)
31, 2issubrg 20599 . . 3 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ 1𝐴)))
43simprbi 496 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ (Base‘𝑅) ∧ 1𝐴))
54simprd 495 1 (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  1rcur 20208  Ringcrg 20260  SubRingcsubrg 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-subrg 20597
This theorem is referenced by:  subrg1  20610  subrgsubm  20613  issubrg2  20620  subrgint  20623  subsubrg  20626  primefld1cl  20830  zsssubrg  21466  issubassa2  21935  subrgpsr  22021  mplassa  22065  mplbas2  22083  ply1assa  22222  asclply1subcl  22399  evls1maprhm  22401  isclmp  25149  taylply2  26427  taylply2OLD  26428  subrgchr  33217  0ringsubrg  33223  fldgensdrg  33281  primefldgen1  33288  drgextlsp  33608  fldgenfldext  33678  evls1fldgencl  33680  ply1annnr  33696  algextdeglem4  33711  rtelextdg2lem  33717  evlsmaprhm  42525  cnsrexpcl  43122  rngunsnply  43130
  Copyright terms: Public domain W3C validator