MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpropd Structured version   Visualization version   GIF version

Theorem subrgpropd 19974
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrgpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrgpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrgpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrgpropd (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrgpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrgpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
2 subrgpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 subrgpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 subrgpropd.4 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 19736 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
61ineq2d 4143 . . . . . . 7 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
7 eqid 2738 . . . . . . . . 9 (𝐾s 𝑠) = (𝐾s 𝑠)
8 eqid 2738 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
97, 8ressbas 16873 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
109elv 3428 . . . . . . 7 (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠))
116, 10eqtrdi 2795 . . . . . 6 (𝜑 → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
122ineq2d 4143 . . . . . . 7 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
13 eqid 2738 . . . . . . . . 9 (𝐿s 𝑠) = (𝐿s 𝑠)
14 eqid 2738 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
1513, 14ressbas 16873 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
1615elv 3428 . . . . . . 7 (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠))
1712, 16eqtrdi 2795 . . . . . 6 (𝜑 → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
18 elinel2 4126 . . . . . . . 8 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
19 elinel2 4126 . . . . . . . 8 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2018, 19anim12i 612 . . . . . . 7 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
21 eqid 2738 . . . . . . . . . . 11 (+g𝐾) = (+g𝐾)
227, 21ressplusg 16926 . . . . . . . . . 10 (𝑠 ∈ V → (+g𝐾) = (+g‘(𝐾s 𝑠)))
2322elv 3428 . . . . . . . . 9 (+g𝐾) = (+g‘(𝐾s 𝑠))
2423oveqi 7268 . . . . . . . 8 (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦)
25 eqid 2738 . . . . . . . . . . 11 (+g𝐿) = (+g𝐿)
2613, 25ressplusg 16926 . . . . . . . . . 10 (𝑠 ∈ V → (+g𝐿) = (+g‘(𝐿s 𝑠)))
2726elv 3428 . . . . . . . . 9 (+g𝐿) = (+g‘(𝐿s 𝑠))
2827oveqi 7268 . . . . . . . 8 (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦)
293, 24, 283eqtr3g 2802 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3020, 29sylan2 592 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
31 eqid 2738 . . . . . . . . . . 11 (.r𝐾) = (.r𝐾)
327, 31ressmulr 16943 . . . . . . . . . 10 (𝑠 ∈ V → (.r𝐾) = (.r‘(𝐾s 𝑠)))
3332elv 3428 . . . . . . . . 9 (.r𝐾) = (.r‘(𝐾s 𝑠))
3433oveqi 7268 . . . . . . . 8 (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦)
35 eqid 2738 . . . . . . . . . . 11 (.r𝐿) = (.r𝐿)
3613, 35ressmulr 16943 . . . . . . . . . 10 (𝑠 ∈ V → (.r𝐿) = (.r‘(𝐿s 𝑠)))
3736elv 3428 . . . . . . . . 9 (.r𝐿) = (.r‘(𝐿s 𝑠))
3837oveqi 7268 . . . . . . . 8 (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦)
394, 34, 383eqtr3g 2802 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4020, 39sylan2 592 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4111, 17, 30, 40ringpropd 19736 . . . . 5 (𝜑 → ((𝐾s 𝑠) ∈ Ring ↔ (𝐿s 𝑠) ∈ Ring))
425, 41anbi12d 630 . . . 4 (𝜑 → ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring)))
431, 2eqtr3d 2780 . . . . . 6 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4443sseq2d 3949 . . . . 5 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
451, 2, 4rngidpropd 19852 . . . . . 6 (𝜑 → (1r𝐾) = (1r𝐿))
4645eleq1d 2823 . . . . 5 (𝜑 → ((1r𝐾) ∈ 𝑠 ↔ (1r𝐿) ∈ 𝑠))
4744, 46anbi12d 630 . . . 4 (𝜑 → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
4842, 47anbi12d 630 . . 3 (𝜑 → (((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠))))
49 eqid 2738 . . . 4 (1r𝐾) = (1r𝐾)
508, 49issubrg 19939 . . 3 (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)))
51 eqid 2738 . . . 4 (1r𝐿) = (1r𝐿)
5214, 51issubrg 19939 . . 3 (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
5348, 50, 523bitr4g 313 . 2 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
5453eqrdv 2736 1 (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  1rcur 19652  Ringcrg 19698  SubRingcsubrg 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937
This theorem is referenced by:  ply1subrg  21278  subrgply1  21314  srasubrg  31576
  Copyright terms: Public domain W3C validator