Step | Hyp | Ref
| Expression |
1 | | subrgpropd.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | subrgpropd.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | | subrgpropd.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
4 | | subrgpropd.4 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
5 | 1, 2, 3, 4 | ringpropd 19736 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
6 | 1 | ineq2d 4143 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐾))) |
7 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐾 ↾s 𝑠) = (𝐾 ↾s 𝑠) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
9 | 7, 8 | ressbas 16873 |
. . . . . . . 8
⊢ (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝑠))) |
10 | 9 | elv 3428 |
. . . . . . 7
⊢ (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝑠)) |
11 | 6, 10 | eqtrdi 2795 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (Base‘(𝐾 ↾s 𝑠))) |
12 | 2 | ineq2d 4143 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (𝑠 ∩ (Base‘𝐿))) |
13 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐿 ↾s 𝑠) = (𝐿 ↾s 𝑠) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐿) =
(Base‘𝐿) |
15 | 13, 14 | ressbas 16873 |
. . . . . . . 8
⊢ (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿 ↾s 𝑠))) |
16 | 15 | elv 3428 |
. . . . . . 7
⊢ (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿 ↾s 𝑠)) |
17 | 12, 16 | eqtrdi 2795 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∩ 𝐵) = (Base‘(𝐿 ↾s 𝑠))) |
18 | | elinel2 4126 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑠 ∩ 𝐵) → 𝑥 ∈ 𝐵) |
19 | | elinel2 4126 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑠 ∩ 𝐵) → 𝑦 ∈ 𝐵) |
20 | 18, 19 | anim12i 612 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
21 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝐾) = (+g‘𝐾) |
22 | 7, 21 | ressplusg 16926 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V →
(+g‘𝐾) =
(+g‘(𝐾
↾s 𝑠))) |
23 | 22 | elv 3428 |
. . . . . . . . 9
⊢
(+g‘𝐾) = (+g‘(𝐾 ↾s 𝑠)) |
24 | 23 | oveqi 7268 |
. . . . . . . 8
⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) |
25 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝐿) = (+g‘𝐿) |
26 | 13, 25 | ressplusg 16926 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V →
(+g‘𝐿) =
(+g‘(𝐿
↾s 𝑠))) |
27 | 26 | elv 3428 |
. . . . . . . . 9
⊢
(+g‘𝐿) = (+g‘(𝐿 ↾s 𝑠)) |
28 | 27 | oveqi 7268 |
. . . . . . . 8
⊢ (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦) |
29 | 3, 24, 28 | 3eqtr3g 2802 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
30 | 20, 29 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵))) → (𝑥(+g‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(+g‘(𝐿 ↾s 𝑠))𝑦)) |
31 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝐾) = (.r‘𝐾) |
32 | 7, 31 | ressmulr 16943 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V →
(.r‘𝐾) =
(.r‘(𝐾
↾s 𝑠))) |
33 | 32 | elv 3428 |
. . . . . . . . 9
⊢
(.r‘𝐾) = (.r‘(𝐾 ↾s 𝑠)) |
34 | 33 | oveqi 7268 |
. . . . . . . 8
⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) |
35 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝐿) = (.r‘𝐿) |
36 | 13, 35 | ressmulr 16943 |
. . . . . . . . . 10
⊢ (𝑠 ∈ V →
(.r‘𝐿) =
(.r‘(𝐿
↾s 𝑠))) |
37 | 36 | elv 3428 |
. . . . . . . . 9
⊢
(.r‘𝐿) = (.r‘(𝐿 ↾s 𝑠)) |
38 | 37 | oveqi 7268 |
. . . . . . . 8
⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦) |
39 | 4, 34, 38 | 3eqtr3g 2802 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
40 | 20, 39 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑠 ∩ 𝐵) ∧ 𝑦 ∈ (𝑠 ∩ 𝐵))) → (𝑥(.r‘(𝐾 ↾s 𝑠))𝑦) = (𝑥(.r‘(𝐿 ↾s 𝑠))𝑦)) |
41 | 11, 17, 30, 40 | ringpropd 19736 |
. . . . 5
⊢ (𝜑 → ((𝐾 ↾s 𝑠) ∈ Ring ↔ (𝐿 ↾s 𝑠) ∈ Ring)) |
42 | 5, 41 | anbi12d 630 |
. . . 4
⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring))) |
43 | 1, 2 | eqtr3d 2780 |
. . . . . 6
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
44 | 43 | sseq2d 3949 |
. . . . 5
⊢ (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿))) |
45 | 1, 2, 4 | rngidpropd 19852 |
. . . . . 6
⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
46 | 45 | eleq1d 2823 |
. . . . 5
⊢ (𝜑 →
((1r‘𝐾)
∈ 𝑠 ↔
(1r‘𝐿)
∈ 𝑠)) |
47 | 44, 46 | anbi12d 630 |
. . . 4
⊢ (𝜑 → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠))) |
48 | 42, 47 | anbi12d 630 |
. . 3
⊢ (𝜑 → (((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠)))) |
49 | | eqid 2738 |
. . . 4
⊢
(1r‘𝐾) = (1r‘𝐾) |
50 | 8, 49 | issubrg 19939 |
. . 3
⊢ (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r‘𝐾) ∈ 𝑠))) |
51 | | eqid 2738 |
. . . 4
⊢
(1r‘𝐿) = (1r‘𝐿) |
52 | 14, 51 | issubrg 19939 |
. . 3
⊢ (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿 ↾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝑠))) |
53 | 48, 50, 52 | 3bitr4g 313 |
. 2
⊢ (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿))) |
54 | 53 | eqrdv 2736 |
1
⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) |