MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgpropd Structured version   Visualization version   GIF version

Theorem subrgpropd 19563
Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
subrgpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrgpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrgpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrgpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrgpropd (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrgpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrgpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
2 subrgpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 subrgpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 subrgpropd.4 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 19328 . . . . 5 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
61ineq2d 4139 . . . . . . 7 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
7 eqid 2798 . . . . . . . . 9 (𝐾s 𝑠) = (𝐾s 𝑠)
8 eqid 2798 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
97, 8ressbas 16546 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
109elv 3446 . . . . . . 7 (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠))
116, 10eqtrdi 2849 . . . . . 6 (𝜑 → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
122ineq2d 4139 . . . . . . 7 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
13 eqid 2798 . . . . . . . . 9 (𝐿s 𝑠) = (𝐿s 𝑠)
14 eqid 2798 . . . . . . . . 9 (Base‘𝐿) = (Base‘𝐿)
1513, 14ressbas 16546 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
1615elv 3446 . . . . . . 7 (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠))
1712, 16eqtrdi 2849 . . . . . 6 (𝜑 → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
18 elinel2 4123 . . . . . . . 8 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
19 elinel2 4123 . . . . . . . 8 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2018, 19anim12i 615 . . . . . . 7 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
21 eqid 2798 . . . . . . . . . . 11 (+g𝐾) = (+g𝐾)
227, 21ressplusg 16604 . . . . . . . . . 10 (𝑠 ∈ V → (+g𝐾) = (+g‘(𝐾s 𝑠)))
2322elv 3446 . . . . . . . . 9 (+g𝐾) = (+g‘(𝐾s 𝑠))
2423oveqi 7148 . . . . . . . 8 (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦)
25 eqid 2798 . . . . . . . . . . 11 (+g𝐿) = (+g𝐿)
2613, 25ressplusg 16604 . . . . . . . . . 10 (𝑠 ∈ V → (+g𝐿) = (+g‘(𝐿s 𝑠)))
2726elv 3446 . . . . . . . . 9 (+g𝐿) = (+g‘(𝐿s 𝑠))
2827oveqi 7148 . . . . . . . 8 (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦)
293, 24, 283eqtr3g 2856 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3020, 29sylan2 595 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
31 eqid 2798 . . . . . . . . . . 11 (.r𝐾) = (.r𝐾)
327, 31ressmulr 16617 . . . . . . . . . 10 (𝑠 ∈ V → (.r𝐾) = (.r‘(𝐾s 𝑠)))
3332elv 3446 . . . . . . . . 9 (.r𝐾) = (.r‘(𝐾s 𝑠))
3433oveqi 7148 . . . . . . . 8 (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦)
35 eqid 2798 . . . . . . . . . . 11 (.r𝐿) = (.r𝐿)
3613, 35ressmulr 16617 . . . . . . . . . 10 (𝑠 ∈ V → (.r𝐿) = (.r‘(𝐿s 𝑠)))
3736elv 3446 . . . . . . . . 9 (.r𝐿) = (.r‘(𝐿s 𝑠))
3837oveqi 7148 . . . . . . . 8 (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦)
394, 34, 383eqtr3g 2856 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4020, 39sylan2 595 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4111, 17, 30, 40ringpropd 19328 . . . . 5 (𝜑 → ((𝐾s 𝑠) ∈ Ring ↔ (𝐿s 𝑠) ∈ Ring))
425, 41anbi12d 633 . . . 4 (𝜑 → ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ↔ (𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring)))
431, 2eqtr3d 2835 . . . . . 6 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4443sseq2d 3947 . . . . 5 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
451, 2, 4rngidpropd 19441 . . . . . 6 (𝜑 → (1r𝐾) = (1r𝐿))
4645eleq1d 2874 . . . . 5 (𝜑 → ((1r𝐾) ∈ 𝑠 ↔ (1r𝐿) ∈ 𝑠))
4744, 46anbi12d 633 . . . 4 (𝜑 → ((𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠) ↔ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
4842, 47anbi12d 633 . . 3 (𝜑 → (((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠))))
49 eqid 2798 . . . 4 (1r𝐾) = (1r𝐾)
508, 49issubrg 19528 . . 3 (𝑠 ∈ (SubRing‘𝐾) ↔ ((𝐾 ∈ Ring ∧ (𝐾s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐾) ∧ (1r𝐾) ∈ 𝑠)))
51 eqid 2798 . . . 4 (1r𝐿) = (1r𝐿)
5214, 51issubrg 19528 . . 3 (𝑠 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝑠) ∈ Ring) ∧ (𝑠 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝑠)))
5348, 50, 523bitr4g 317 . 2 (𝜑 → (𝑠 ∈ (SubRing‘𝐾) ↔ 𝑠 ∈ (SubRing‘𝐿)))
5453eqrdv 2796 1 (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  wss 3881  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  +gcplusg 16557  .rcmulr 16558  1rcur 19244  Ringcrg 19290  SubRingcsubrg 19524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526
This theorem is referenced by:  ply1subrg  20826  subrgply1  20862  srasubrg  31077
  Copyright terms: Public domain W3C validator