Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27dlem4 Structured version   Visualization version   GIF version

Theorem jm2.27dlem4 42973
Description: Lemma for rmydioph 42975. Infer -hood of large numbers. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
jm2.27dlem3.1 𝐴 ∈ ℕ
jm2.27dlem4.2 𝐵 = (𝐴 + 1)
Assertion
Ref Expression
jm2.27dlem4 𝐵 ∈ ℕ

Proof of Theorem jm2.27dlem4
StepHypRef Expression
1 jm2.27dlem4.2 . 2 𝐵 = (𝐴 + 1)
2 jm2.27dlem3.1 . . 3 𝐴 ∈ ℕ
3 peano2nn 12209 . . 3 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (𝐴 + 1) ∈ ℕ
51, 4eqeltri 2825 1 𝐵 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7394  1c1 11087   + caddc 11089  cn 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-nn 12198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator