MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj12 Structured version   Visualization version   GIF version

Theorem latj12 17365
Description: Swap 1st and 2nd members of lattice join. (chj12 28852 analog.) (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latj12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑌 (𝑋 𝑍)))

Proof of Theorem latj12
StepHypRef Expression
1 latjass.b . . . . 5 𝐵 = (Base‘𝐾)
2 latjass.j . . . . 5 = (join‘𝐾)
31, 2latjcom 17328 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
433adant3r3 1235 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) = (𝑌 𝑋))
54oveq1d 6859 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((𝑌 𝑋) 𝑍))
61, 2latjass 17364 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
7 simpl 474 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
8 simpr2 1250 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
9 simpr1 1248 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr3 1252 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
111, 2latjass 17364 . . 3 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑋𝐵𝑍𝐵)) → ((𝑌 𝑋) 𝑍) = (𝑌 (𝑋 𝑍)))
127, 8, 9, 10, 11syl13anc 1491 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑋) 𝑍) = (𝑌 (𝑋 𝑍)))
135, 6, 123eqtr3d 2807 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑌 (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cfv 6070  (class class class)co 6844  Basecbs 16133  joincjn 17213  Latclat 17314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-proset 17197  df-poset 17215  df-lub 17243  df-glb 17244  df-join 17245  df-meet 17246  df-lat 17315
This theorem is referenced by:  latj31  17368  latj4  17370  4atlem4b  35559  4atlem4c  35560  dalawlem3  35832  cdleme1  36186  cdleme5  36199  cdleme11g  36224
  Copyright terms: Public domain W3C validator