| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latj31 | Structured version Visualization version GIF version | ||
| Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 23-Jun-2012.) |
| Ref | Expression |
|---|---|
| latjass.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjass.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latj31 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑍 ∨ 𝑌) ∨ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 2 | simpr3 1197 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 3 | simpr1 1195 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 4 | simpr2 1196 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 5 | latjass.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | latjass.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 7 | 5, 6 | latj12 18450 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑍 ∨ (𝑋 ∨ 𝑌)) = (𝑋 ∨ (𝑍 ∨ 𝑌))) |
| 8 | 1, 2, 3, 4, 7 | syl13anc 1374 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ∨ (𝑋 ∨ 𝑌)) = (𝑋 ∨ (𝑍 ∨ 𝑌))) |
| 9 | 5, 6 | latjcl 18405 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 10 | 9 | 3adant3r3 1185 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 11 | 5, 6 | latjcom 18413 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = (𝑍 ∨ (𝑋 ∨ 𝑌))) |
| 12 | 1, 10, 2, 11 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = (𝑍 ∨ (𝑋 ∨ 𝑌))) |
| 13 | 5, 6 | latjcl 18405 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 ∨ 𝑌) ∈ 𝐵) |
| 14 | 1, 2, 4, 13 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ∨ 𝑌) ∈ 𝐵) |
| 15 | 5, 6 | latjcom 18413 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑍 ∨ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑍 ∨ 𝑌) ∨ 𝑋) = (𝑋 ∨ (𝑍 ∨ 𝑌))) |
| 16 | 1, 14, 3, 15 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑍 ∨ 𝑌) ∨ 𝑋) = (𝑋 ∨ (𝑍 ∨ 𝑌))) |
| 17 | 8, 12, 16 | 3eqtr4d 2775 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑍 ∨ 𝑌) ∨ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 joincjn 18279 Latclat 18397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-proset 18262 df-poset 18281 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-lat 18398 |
| This theorem is referenced by: latjrot 18454 4noncolr3 39454 3atlem5 39488 lplnexllnN 39565 dalawlem11 39882 cdleme20bN 40311 |
| Copyright terms: Public domain | W3C validator |