MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj31 Structured version   Visualization version   GIF version

Theorem latj31 18545
Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latj31 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((𝑍 𝑌) 𝑋))

Proof of Theorem latj31
StepHypRef Expression
1 simpl 482 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
2 simpr3 1195 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
3 simpr1 1193 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
4 simpr2 1194 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
5 latjass.b . . . 4 𝐵 = (Base‘𝐾)
6 latjass.j . . . 4 = (join‘𝐾)
75, 6latj12 18542 . . 3 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑋𝐵𝑌𝐵)) → (𝑍 (𝑋 𝑌)) = (𝑋 (𝑍 𝑌)))
81, 2, 3, 4, 7syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 (𝑋 𝑌)) = (𝑋 (𝑍 𝑌)))
95, 6latjcl 18497 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1093adant3r3 1183 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
115, 6latjcom 18505 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑋 𝑌)))
121, 10, 2, 11syl3anc 1370 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑋 𝑌)))
135, 6latjcl 18497 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) ∈ 𝐵)
141, 2, 4, 13syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑌) ∈ 𝐵)
155, 6latjcom 18505 . . 3 ((𝐾 ∈ Lat ∧ (𝑍 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑍 𝑌) 𝑋) = (𝑋 (𝑍 𝑌)))
161, 14, 3, 15syl3anc 1370 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 𝑌) 𝑋) = (𝑋 (𝑍 𝑌)))
178, 12, 163eqtr4d 2785 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((𝑍 𝑌) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  joincjn 18369  Latclat 18489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-lat 18490
This theorem is referenced by:  latjrot  18546  4noncolr3  39436  3atlem5  39470  lplnexllnN  39547  dalawlem11  39864  cdleme20bN  40293
  Copyright terms: Public domain W3C validator