MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj31 Structured version   Visualization version   GIF version

Theorem latj31 18205
Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latj31 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((𝑍 𝑌) 𝑋))

Proof of Theorem latj31
StepHypRef Expression
1 simpl 483 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
2 simpr3 1195 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
3 simpr1 1193 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
4 simpr2 1194 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
5 latjass.b . . . 4 𝐵 = (Base‘𝐾)
6 latjass.j . . . 4 = (join‘𝐾)
75, 6latj12 18202 . . 3 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑋𝐵𝑌𝐵)) → (𝑍 (𝑋 𝑌)) = (𝑋 (𝑍 𝑌)))
81, 2, 3, 4, 7syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 (𝑋 𝑌)) = (𝑋 (𝑍 𝑌)))
95, 6latjcl 18157 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1093adant3r3 1183 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
115, 6latjcom 18165 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑋 𝑌)))
121, 10, 2, 11syl3anc 1370 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑋 𝑌)))
135, 6latjcl 18157 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) ∈ 𝐵)
141, 2, 4, 13syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑌) ∈ 𝐵)
155, 6latjcom 18165 . . 3 ((𝐾 ∈ Lat ∧ (𝑍 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑍 𝑌) 𝑋) = (𝑋 (𝑍 𝑌)))
161, 14, 3, 15syl3anc 1370 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 𝑌) 𝑋) = (𝑋 (𝑍 𝑌)))
178, 12, 163eqtr4d 2788 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((𝑍 𝑌) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  joincjn 18029  Latclat 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150
This theorem is referenced by:  latjrot  18206  4noncolr3  37467  3atlem5  37501  lplnexllnN  37578  dalawlem11  37895  cdleme20bN  38324
  Copyright terms: Public domain W3C validator