MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj31 Structured version   Visualization version   GIF version

Theorem latj31 18442
Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latj31 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((𝑍 𝑌) 𝑋))

Proof of Theorem latj31
StepHypRef Expression
1 simpl 482 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
2 simpr3 1193 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
3 simpr1 1191 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
4 simpr2 1192 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
5 latjass.b . . . 4 𝐵 = (Base‘𝐾)
6 latjass.j . . . 4 = (join‘𝐾)
75, 6latj12 18439 . . 3 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑋𝐵𝑌𝐵)) → (𝑍 (𝑋 𝑌)) = (𝑋 (𝑍 𝑌)))
81, 2, 3, 4, 7syl13anc 1369 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 (𝑋 𝑌)) = (𝑋 (𝑍 𝑌)))
95, 6latjcl 18394 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1093adant3r3 1181 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
115, 6latjcom 18402 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑋 𝑌)))
121, 10, 2, 11syl3anc 1368 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑋 𝑌)))
135, 6latjcl 18394 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) ∈ 𝐵)
141, 2, 4, 13syl3anc 1368 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑌) ∈ 𝐵)
155, 6latjcom 18402 . . 3 ((𝐾 ∈ Lat ∧ (𝑍 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑍 𝑌) 𝑋) = (𝑋 (𝑍 𝑌)))
161, 14, 3, 15syl3anc 1368 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 𝑌) 𝑋) = (𝑋 (𝑍 𝑌)))
178, 12, 163eqtr4d 2774 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((𝑍 𝑌) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  cfv 6533  (class class class)co 7401  Basecbs 17143  joincjn 18266  Latclat 18386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-proset 18250  df-poset 18268  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-lat 18387
This theorem is referenced by:  latjrot  18443  4noncolr3  38814  3atlem5  38848  lplnexllnN  38925  dalawlem11  39242  cdleme20bN  39671
  Copyright terms: Public domain W3C validator