Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11g Structured version   Visualization version   GIF version

Theorem cdleme11g 40251
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40256. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme11.c 𝐶 = ((𝑃 𝑆) 𝑊)
cdleme11.d 𝐷 = ((𝑃 𝑇) 𝑊)
cdleme11.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme11g (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))

Proof of Theorem cdleme11g
StepHypRef Expression
1 cdleme11.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
21oveq2i 7405 . . 3 (𝑄 𝐹) = (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊))))
3 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
4 simp22l 1293 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
53hllatd 39349 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
6 simp23 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑆𝐴)
7 eqid 2730 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme11.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 39274 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
106, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑆 ∈ (Base‘𝐾))
11 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
13 cdleme11.l . . . . . . 7 = (le‘𝐾)
14 cdleme11.j . . . . . . 7 = (join‘𝐾)
15 cdleme11.m . . . . . . 7 = (meet‘𝐾)
16 cdleme11.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
17 cdleme11.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
1813, 14, 15, 8, 16, 17, 7cdleme0aa 40196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈 ∈ (Base‘𝐾))
1911, 12, 4, 18syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑈 ∈ (Base‘𝐾))
207, 14latjcl 18404 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 𝑈) ∈ (Base‘𝐾))
215, 10, 19, 20syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑆 𝑈) ∈ (Base‘𝐾))
227, 8atbase 39274 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
234, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
247, 8atbase 39274 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2512, 24syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
267, 14latjcl 18404 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑆) ∈ (Base‘𝐾))
275, 25, 10, 26syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑃 𝑆) ∈ (Base‘𝐾))
28 simp1r 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑊𝐻)
297, 16lhpbase 39984 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑊 ∈ (Base‘𝐾))
317, 15latmcl 18405 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾))
325, 27, 30, 31syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾))
337, 14latjcl 18404 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾))
345, 23, 32, 33syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾))
357, 13, 14latlej1 18413 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾)) → 𝑄 (𝑄 ((𝑃 𝑆) 𝑊)))
365, 23, 32, 35syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄 (𝑄 ((𝑃 𝑆) 𝑊)))
377, 13, 14, 15, 8atmod1i1 39843 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑄 (𝑄 ((𝑃 𝑆) 𝑊))) → (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
383, 4, 21, 34, 36, 37syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
392, 38eqtrid 2777 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
40 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4113, 14, 15, 8, 16, 17cdleme0cq 40201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))
4211, 12, 40, 41syl12anc 836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝑈) = (𝑃 𝑄))
4342oveq2d 7410 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑆 (𝑄 𝑈)) = (𝑆 (𝑃 𝑄)))
447, 14latj12 18449 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 (𝑆 𝑈)) = (𝑆 (𝑄 𝑈)))
455, 23, 10, 19, 44syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑆 𝑈)) = (𝑆 (𝑄 𝑈)))
467, 14latj13 18451 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑆)) = (𝑆 (𝑃 𝑄)))
475, 23, 25, 10, 46syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑃 𝑆)) = (𝑆 (𝑃 𝑄)))
4843, 45, 473eqtr4d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑆 𝑈)) = (𝑄 (𝑃 𝑆)))
4948oveq1d 7409 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))) = ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))))
507, 13, 15latmle1 18429 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
515, 27, 30, 50syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
527, 13, 14latjlej2 18419 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (((𝑃 𝑆) 𝑊) (𝑃 𝑆) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆))))
535, 32, 27, 23, 52syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (((𝑃 𝑆) 𝑊) (𝑃 𝑆) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆))))
5451, 53mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)))
557, 14latjcl 18404 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
565, 23, 27, 55syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
577, 13, 15latleeqm2 18433 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊))))
585, 34, 56, 57syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊))))
5954, 58mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊)))
60 cdleme11.c . . . 4 𝐶 = ((𝑃 𝑆) 𝑊)
6160oveq2i 7405 . . 3 (𝑄 𝐶) = (𝑄 ((𝑃 𝑆) 𝑊))
6259, 61eqtr4di 2783 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 𝐶))
6339, 49, 623eqtrd 2769 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927   class class class wbr 5115  cfv 6519  (class class class)co 7394  Basecbs 17185  lecple 17233  joincjn 18278  meetcmee 18279  Latclat 18396  Atomscatm 39248  HLchlt 39335  LHypclh 39970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 39161  df-ol 39163  df-oml 39164  df-covers 39251  df-ats 39252  df-atl 39283  df-cvlat 39307  df-hlat 39336  df-psubsp 39489  df-pmap 39490  df-padd 39782  df-lhyp 39974
This theorem is referenced by:  cdleme11h  40252  cdleme11j  40253  cdleme15a  40260
  Copyright terms: Public domain W3C validator