Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11g Structured version   Visualization version   GIF version

Theorem cdleme11g 38206
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 38211. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme11.c 𝐶 = ((𝑃 𝑆) 𝑊)
cdleme11.d 𝐷 = ((𝑃 𝑇) 𝑊)
cdleme11.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme11g (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))

Proof of Theorem cdleme11g
StepHypRef Expression
1 cdleme11.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
21oveq2i 7266 . . 3 (𝑄 𝐹) = (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊))))
3 simp1l 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
4 simp22l 1290 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
53hllatd 37305 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
6 simp23 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑆𝐴)
7 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme11.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 37230 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
106, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑆 ∈ (Base‘𝐾))
11 simp1 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp21 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
13 cdleme11.l . . . . . . 7 = (le‘𝐾)
14 cdleme11.j . . . . . . 7 = (join‘𝐾)
15 cdleme11.m . . . . . . 7 = (meet‘𝐾)
16 cdleme11.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
17 cdleme11.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
1813, 14, 15, 8, 16, 17, 7cdleme0aa 38151 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈 ∈ (Base‘𝐾))
1911, 12, 4, 18syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑈 ∈ (Base‘𝐾))
207, 14latjcl 18072 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 𝑈) ∈ (Base‘𝐾))
215, 10, 19, 20syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑆 𝑈) ∈ (Base‘𝐾))
227, 8atbase 37230 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
234, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
247, 8atbase 37230 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2512, 24syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
267, 14latjcl 18072 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑆) ∈ (Base‘𝐾))
275, 25, 10, 26syl3anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑃 𝑆) ∈ (Base‘𝐾))
28 simp1r 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑊𝐻)
297, 16lhpbase 37939 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑊 ∈ (Base‘𝐾))
317, 15latmcl 18073 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾))
325, 27, 30, 31syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾))
337, 14latjcl 18072 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾))
345, 23, 32, 33syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾))
357, 13, 14latlej1 18081 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾)) → 𝑄 (𝑄 ((𝑃 𝑆) 𝑊)))
365, 23, 32, 35syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄 (𝑄 ((𝑃 𝑆) 𝑊)))
377, 13, 14, 15, 8atmod1i1 37798 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑄 (𝑄 ((𝑃 𝑆) 𝑊))) → (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
383, 4, 21, 34, 36, 37syl131anc 1381 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
392, 38syl5eq 2791 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
40 simp22 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4113, 14, 15, 8, 16, 17cdleme0cq 38156 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))
4211, 12, 40, 41syl12anc 833 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝑈) = (𝑃 𝑄))
4342oveq2d 7271 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑆 (𝑄 𝑈)) = (𝑆 (𝑃 𝑄)))
447, 14latj12 18117 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 (𝑆 𝑈)) = (𝑆 (𝑄 𝑈)))
455, 23, 10, 19, 44syl13anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑆 𝑈)) = (𝑆 (𝑄 𝑈)))
467, 14latj13 18119 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑆)) = (𝑆 (𝑃 𝑄)))
475, 23, 25, 10, 46syl13anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑃 𝑆)) = (𝑆 (𝑃 𝑄)))
4843, 45, 473eqtr4d 2788 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑆 𝑈)) = (𝑄 (𝑃 𝑆)))
4948oveq1d 7270 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))) = ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))))
507, 13, 15latmle1 18097 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
515, 27, 30, 50syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
527, 13, 14latjlej2 18087 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (((𝑃 𝑆) 𝑊) (𝑃 𝑆) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆))))
535, 32, 27, 23, 52syl13anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (((𝑃 𝑆) 𝑊) (𝑃 𝑆) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆))))
5451, 53mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)))
557, 14latjcl 18072 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
565, 23, 27, 55syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
577, 13, 15latleeqm2 18101 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊))))
585, 34, 56, 57syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊))))
5954, 58mpbid 231 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊)))
60 cdleme11.c . . . 4 𝐶 = ((𝑃 𝑆) 𝑊)
6160oveq2i 7266 . . 3 (𝑄 𝐶) = (𝑄 ((𝑃 𝑆) 𝑊))
6259, 61eqtr4di 2797 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 𝐶))
6339, 49, 623eqtrd 2782 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  HLchlt 37291  LHypclh 37925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929
This theorem is referenced by:  cdleme11h  38207  cdleme11j  38208  cdleme15a  38215
  Copyright terms: Public domain W3C validator