Proof of Theorem cdleme11g
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cdleme11.f | 
. . . 4
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | 
| 2 | 1 | oveq2i 7423 | 
. . 3
⊢ (𝑄 ∨ 𝐹) = (𝑄 ∨ ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) | 
| 3 |   | simp1l 1197 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) | 
| 4 |   | simp22l 1292 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | 
| 5 | 3 | hllatd 39299 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) | 
| 6 |   | simp23 1208 | 
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑆 ∈ 𝐴) | 
| 7 |   | eqid 2734 | 
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 8 |   | cdleme11.a | 
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 | 7, 8 | atbase 39224 | 
. . . . . 6
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) | 
| 10 | 6, 9 | syl 17 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑆 ∈ (Base‘𝐾)) | 
| 11 |   | simp1 1136 | 
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 12 |   | simp21 1206 | 
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | 
| 13 |   | cdleme11.l | 
. . . . . . 7
⊢  ≤ =
(le‘𝐾) | 
| 14 |   | cdleme11.j | 
. . . . . . 7
⊢  ∨ =
(join‘𝐾) | 
| 15 |   | cdleme11.m | 
. . . . . . 7
⊢  ∧ =
(meet‘𝐾) | 
| 16 |   | cdleme11.h | 
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) | 
| 17 |   | cdleme11.u | 
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 18 | 13, 14, 15, 8, 16, 17, 7 | cdleme0aa 40146 | 
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ (Base‘𝐾)) | 
| 19 | 11, 12, 4, 18 | syl3anc 1372 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑈 ∈ (Base‘𝐾)) | 
| 20 | 7, 14 | latjcl 18452 | 
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 ∨ 𝑈) ∈ (Base‘𝐾)) | 
| 21 | 5, 10, 19, 20 | syl3anc 1372 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑆 ∨ 𝑈) ∈ (Base‘𝐾)) | 
| 22 | 7, 8 | atbase 39224 | 
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 23 | 4, 22 | syl 17 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (Base‘𝐾)) | 
| 24 | 7, 8 | atbase 39224 | 
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 25 | 12, 24 | syl 17 | 
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (Base‘𝐾)) | 
| 26 | 7, 14 | latjcl 18452 | 
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 27 | 5, 25, 10, 26 | syl3anc 1372 | 
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 28 |   | simp1r 1198 | 
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ 𝐻) | 
| 29 | 7, 16 | lhpbase 39934 | 
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 30 | 28, 29 | syl 17 | 
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ (Base‘𝐾)) | 
| 31 | 7, 15 | latmcl 18453 | 
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) | 
| 32 | 5, 27, 30, 31 | syl3anc 1372 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) | 
| 33 | 7, 14 | latjcl 18452 | 
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) | 
| 34 | 5, 23, 32, 33 | syl3anc 1372 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) | 
| 35 | 7, 13, 14 | latlej1 18461 | 
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) → 𝑄 ≤ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | 
| 36 | 5, 23, 32, 35 | syl3anc 1372 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ≤ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | 
| 37 | 7, 13, 14, 15, 8 | atmod1i1 39793 | 
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑆 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑄 ≤ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) → (𝑄 ∨ ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) = ((𝑄 ∨ (𝑆 ∨ 𝑈)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) | 
| 38 | 3, 4, 21, 34, 36, 37 | syl131anc 1384 | 
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) = ((𝑄 ∨ (𝑆 ∨ 𝑈)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) | 
| 39 | 2, 38 | eqtrid 2781 | 
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ 𝐹) = ((𝑄 ∨ (𝑆 ∨ 𝑈)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) | 
| 40 |   | simp22 1207 | 
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 41 | 13, 14, 15, 8, 16, 17 | cdleme0cq 40151 | 
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑄 ∨ 𝑈) = (𝑃 ∨ 𝑄)) | 
| 42 | 11, 12, 40, 41 | syl12anc 836 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ 𝑈) = (𝑃 ∨ 𝑄)) | 
| 43 | 42 | oveq2d 7428 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑆 ∨ (𝑄 ∨ 𝑈)) = (𝑆 ∨ (𝑃 ∨ 𝑄))) | 
| 44 | 7, 14 | latj12 18497 | 
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 ∨ (𝑆 ∨ 𝑈)) = (𝑆 ∨ (𝑄 ∨ 𝑈))) | 
| 45 | 5, 23, 10, 19, 44 | syl13anc 1373 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ (𝑆 ∨ 𝑈)) = (𝑆 ∨ (𝑄 ∨ 𝑈))) | 
| 46 | 7, 14 | latj13 18499 | 
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = (𝑆 ∨ (𝑃 ∨ 𝑄))) | 
| 47 | 5, 23, 25, 10, 46 | syl13anc 1373 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = (𝑆 ∨ (𝑃 ∨ 𝑄))) | 
| 48 | 43, 45, 47 | 3eqtr4d 2779 | 
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ (𝑆 ∨ 𝑈)) = (𝑄 ∨ (𝑃 ∨ 𝑆))) | 
| 49 | 48 | oveq1d 7427 | 
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑄 ∨ (𝑆 ∨ 𝑈)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) | 
| 50 | 7, 13, 15 | latmle1 18477 | 
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) | 
| 51 | 5, 27, 30, 50 | syl3anc 1372 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) | 
| 52 | 7, 13, 14 | latjlej2 18467 | 
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)))) | 
| 53 | 5, 32, 27, 23, 52 | syl13anc 1373 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)))) | 
| 54 | 51, 53 | mpd 15 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆))) | 
| 55 | 7, 14 | latjcl 18452 | 
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) | 
| 56 | 5, 23, 27, 55 | syl3anc 1372 | 
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) | 
| 57 | 7, 13, 15 | latleeqm2 18481 | 
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)) ↔ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) | 
| 58 | 5, 34, 56, 57 | syl3anc 1372 | 
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)) ↔ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) | 
| 59 | 54, 58 | mpbid 232 | 
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) | 
| 60 |   | cdleme11.c | 
. . . 4
⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | 
| 61 | 60 | oveq2i 7423 | 
. . 3
⊢ (𝑄 ∨ 𝐶) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) | 
| 62 | 59, 61 | eqtr4di 2787 | 
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = (𝑄 ∨ 𝐶)) | 
| 63 | 39, 49, 62 | 3eqtrd 2773 | 
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ 𝐹) = (𝑄 ∨ 𝐶)) |