Proof of Theorem cdleme11g
Step | Hyp | Ref
| Expression |
1 | | cdleme11.f |
. . . 4
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
2 | 1 | oveq2i 7266 |
. . 3
⊢ (𝑄 ∨ 𝐹) = (𝑄 ∨ ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
3 | | simp1l 1195 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ HL) |
4 | | simp22l 1290 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) |
5 | 3 | hllatd 37305 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) |
6 | | simp23 1206 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑆 ∈ 𝐴) |
7 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | cdleme11.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 7, 8 | atbase 37230 |
. . . . . 6
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
10 | 6, 9 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑆 ∈ (Base‘𝐾)) |
11 | | simp1 1134 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | | simp21 1204 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) |
13 | | cdleme11.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
14 | | cdleme11.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
15 | | cdleme11.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
16 | | cdleme11.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
17 | | cdleme11.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
18 | 13, 14, 15, 8, 16, 17, 7 | cdleme0aa 38151 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ (Base‘𝐾)) |
19 | 11, 12, 4, 18 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑈 ∈ (Base‘𝐾)) |
20 | 7, 14 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 ∨ 𝑈) ∈ (Base‘𝐾)) |
21 | 5, 10, 19, 20 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑆 ∨ 𝑈) ∈ (Base‘𝐾)) |
22 | 7, 8 | atbase 37230 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
23 | 4, 22 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (Base‘𝐾)) |
24 | 7, 8 | atbase 37230 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
25 | 12, 24 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (Base‘𝐾)) |
26 | 7, 14 | latjcl 18072 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
27 | 5, 25, 10, 26 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
28 | | simp1r 1196 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ 𝐻) |
29 | 7, 16 | lhpbase 37939 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
30 | 28, 29 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑊 ∈ (Base‘𝐾)) |
31 | 7, 15 | latmcl 18073 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) |
32 | 5, 27, 30, 31 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) |
33 | 7, 14 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) |
34 | 5, 23, 32, 33 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) |
35 | 7, 13, 14 | latlej1 18081 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) → 𝑄 ≤ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
36 | 5, 23, 32, 35 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ≤ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
37 | 7, 13, 14, 15, 8 | atmod1i1 37798 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑆 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑄 ≤ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) → (𝑄 ∨ ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) = ((𝑄 ∨ (𝑆 ∨ 𝑈)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
38 | 3, 4, 21, 34, 36, 37 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) = ((𝑄 ∨ (𝑆 ∨ 𝑈)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
39 | 2, 38 | syl5eq 2791 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ 𝐹) = ((𝑄 ∨ (𝑆 ∨ 𝑈)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
40 | | simp22 1205 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
41 | 13, 14, 15, 8, 16, 17 | cdleme0cq 38156 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑄 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
42 | 11, 12, 40, 41 | syl12anc 833 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
43 | 42 | oveq2d 7271 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑆 ∨ (𝑄 ∨ 𝑈)) = (𝑆 ∨ (𝑃 ∨ 𝑄))) |
44 | 7, 14 | latj12 18117 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 ∨ (𝑆 ∨ 𝑈)) = (𝑆 ∨ (𝑄 ∨ 𝑈))) |
45 | 5, 23, 10, 19, 44 | syl13anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ (𝑆 ∨ 𝑈)) = (𝑆 ∨ (𝑄 ∨ 𝑈))) |
46 | 7, 14 | latj13 18119 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = (𝑆 ∨ (𝑃 ∨ 𝑄))) |
47 | 5, 23, 25, 10, 46 | syl13anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = (𝑆 ∨ (𝑃 ∨ 𝑄))) |
48 | 43, 45, 47 | 3eqtr4d 2788 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ (𝑆 ∨ 𝑈)) = (𝑄 ∨ (𝑃 ∨ 𝑆))) |
49 | 48 | oveq1d 7270 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑄 ∨ (𝑆 ∨ 𝑈)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
50 | 7, 13, 15 | latmle1 18097 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
51 | 5, 27, 30, 50 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
52 | 7, 13, 14 | latjlej2 18087 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)))) |
53 | 5, 32, 27, 23, 52 | syl13anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)))) |
54 | 51, 53 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆))) |
55 | 7, 14 | latjcl 18072 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) |
56 | 5, 23, 27, 55 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) |
57 | 7, 13, 15 | latleeqm2 18101 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)) ↔ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
58 | 5, 34, 56, 57 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)) ↔ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
59 | 54, 58 | mpbid 231 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
60 | | cdleme11.c |
. . . 4
⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
61 | 60 | oveq2i 7266 |
. . 3
⊢ (𝑄 ∨ 𝐶) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) |
62 | 59, 61 | eqtr4di 2797 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) = (𝑄 ∨ 𝐶)) |
63 | 39, 49, 62 | 3eqtrd 2782 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ 𝐹) = (𝑄 ∨ 𝐶)) |