Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11g Structured version   Visualization version   GIF version

Theorem cdleme11g 40262
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40267. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme11.c 𝐶 = ((𝑃 𝑆) 𝑊)
cdleme11.d 𝐷 = ((𝑃 𝑇) 𝑊)
cdleme11.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme11g (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))

Proof of Theorem cdleme11g
StepHypRef Expression
1 cdleme11.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
21oveq2i 7449 . . 3 (𝑄 𝐹) = (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊))))
3 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
4 simp22l 1293 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
53hllatd 39360 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
6 simp23 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑆𝐴)
7 eqid 2737 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 cdleme11.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8atbase 39285 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
106, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑆 ∈ (Base‘𝐾))
11 simp1 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
13 cdleme11.l . . . . . . 7 = (le‘𝐾)
14 cdleme11.j . . . . . . 7 = (join‘𝐾)
15 cdleme11.m . . . . . . 7 = (meet‘𝐾)
16 cdleme11.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
17 cdleme11.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
1813, 14, 15, 8, 16, 17, 7cdleme0aa 40207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈 ∈ (Base‘𝐾))
1911, 12, 4, 18syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑈 ∈ (Base‘𝐾))
207, 14latjcl 18506 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 𝑈) ∈ (Base‘𝐾))
215, 10, 19, 20syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑆 𝑈) ∈ (Base‘𝐾))
227, 8atbase 39285 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
234, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
247, 8atbase 39285 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2512, 24syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
267, 14latjcl 18506 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑆) ∈ (Base‘𝐾))
275, 25, 10, 26syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑃 𝑆) ∈ (Base‘𝐾))
28 simp1r 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑊𝐻)
297, 16lhpbase 39995 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑊 ∈ (Base‘𝐾))
317, 15latmcl 18507 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾))
325, 27, 30, 31syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾))
337, 14latjcl 18506 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾))
345, 23, 32, 33syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾))
357, 13, 14latlej1 18515 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾)) → 𝑄 (𝑄 ((𝑃 𝑆) 𝑊)))
365, 23, 32, 35syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → 𝑄 (𝑄 ((𝑃 𝑆) 𝑊)))
377, 13, 14, 15, 8atmod1i1 39854 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑄 (𝑄 ((𝑃 𝑆) 𝑊))) → (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
383, 4, 21, 34, 36, 37syl131anc 1384 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
392, 38eqtrid 2789 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))))
40 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4113, 14, 15, 8, 16, 17cdleme0cq 40212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))
4211, 12, 40, 41syl12anc 837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝑈) = (𝑃 𝑄))
4342oveq2d 7454 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑆 (𝑄 𝑈)) = (𝑆 (𝑃 𝑄)))
447, 14latj12 18551 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑄 (𝑆 𝑈)) = (𝑆 (𝑄 𝑈)))
455, 23, 10, 19, 44syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑆 𝑈)) = (𝑆 (𝑄 𝑈)))
467, 14latj13 18553 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑆)) = (𝑆 (𝑃 𝑄)))
475, 23, 25, 10, 46syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑃 𝑆)) = (𝑆 (𝑃 𝑄)))
4843, 45, 473eqtr4d 2787 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑆 𝑈)) = (𝑄 (𝑃 𝑆)))
4948oveq1d 7453 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑆 𝑈)) (𝑄 ((𝑃 𝑆) 𝑊))) = ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))))
507, 13, 15latmle1 18531 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
515, 27, 30, 50syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
527, 13, 14latjlej2 18521 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (((𝑃 𝑆) 𝑊) (𝑃 𝑆) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆))))
535, 32, 27, 23, 52syl13anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (((𝑃 𝑆) 𝑊) (𝑃 𝑆) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆))))
5451, 53mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)))
557, 14latjcl 18506 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
565, 23, 27, 55syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
577, 13, 15latleeqm2 18535 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ((𝑃 𝑆) 𝑊)) ∈ (Base‘𝐾) ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊))))
585, 34, 56, 57syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 ((𝑃 𝑆) 𝑊)) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊))))
5954, 58mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 ((𝑃 𝑆) 𝑊)))
60 cdleme11.c . . . 4 𝐶 = ((𝑃 𝑆) 𝑊)
6160oveq2i 7449 . . 3 (𝑄 𝐶) = (𝑄 ((𝑃 𝑆) 𝑊))
6259, 61eqtr4di 2795 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → ((𝑄 (𝑃 𝑆)) (𝑄 ((𝑃 𝑆) 𝑊))) = (𝑄 𝐶))
6339, 49, 623eqtrd 2781 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940   class class class wbr 5151  cfv 6569  (class class class)co 7438  Basecbs 17254  lecple 17314  joincjn 18378  meetcmee 18379  Latclat 18498  Atomscatm 39259  HLchlt 39346  LHypclh 39981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-proset 18361  df-poset 18380  df-plt 18397  df-lub 18413  df-glb 18414  df-join 18415  df-meet 18416  df-p0 18492  df-p1 18493  df-lat 18499  df-clat 18566  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347  df-psubsp 39500  df-pmap 39501  df-padd 39793  df-lhyp 39985
This theorem is referenced by:  cdleme11h  40263  cdleme11j  40264  cdleme15a  40271
  Copyright terms: Public domain W3C validator