MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj13 Structured version   Visualization version   GIF version

Theorem latj13 18449
Description: Swap 1st and 3rd members of lattice join. (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐡 = (Baseβ€˜πΎ)
latjass.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
latj13 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∨ 𝑍)) = (𝑍 ∨ (π‘Œ ∨ 𝑋)))

Proof of Theorem latj13
StepHypRef Expression
1 simpl 482 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ 𝐾 ∈ Lat)
2 simpr2 1192 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
3 simpr3 1193 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ 𝑍 ∈ 𝐡)
4 simpr1 1191 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
5 latjass.b . . . 4 𝐡 = (Baseβ€˜πΎ)
6 latjass.j . . . 4 ∨ = (joinβ€˜πΎ)
75, 6latj32 18448 . . 3 ((𝐾 ∈ Lat ∧ (π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((π‘Œ ∨ 𝑍) ∨ 𝑋) = ((π‘Œ ∨ 𝑋) ∨ 𝑍))
81, 2, 3, 4, 7syl13anc 1369 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((π‘Œ ∨ 𝑍) ∨ 𝑋) = ((π‘Œ ∨ 𝑋) ∨ 𝑍))
95, 6latjcl 18402 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (π‘Œ ∨ 𝑍) ∈ 𝐡)
1093adant3r1 1179 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (π‘Œ ∨ 𝑍) ∈ 𝐡)
115, 6latjcom 18410 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ (π‘Œ ∨ 𝑍) ∈ 𝐡) β†’ (𝑋 ∨ (π‘Œ ∨ 𝑍)) = ((π‘Œ ∨ 𝑍) ∨ 𝑋))
121, 4, 10, 11syl3anc 1368 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∨ 𝑍)) = ((π‘Œ ∨ 𝑍) ∨ 𝑋))
135, 6latjcl 18402 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (π‘Œ ∨ 𝑋) ∈ 𝐡)
141, 2, 4, 13syl3anc 1368 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (π‘Œ ∨ 𝑋) ∈ 𝐡)
155, 6latjcom 18410 . . 3 ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐡 ∧ (π‘Œ ∨ 𝑋) ∈ 𝐡) β†’ (𝑍 ∨ (π‘Œ ∨ 𝑋)) = ((π‘Œ ∨ 𝑋) ∨ 𝑍))
161, 3, 14, 15syl3anc 1368 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑍 ∨ (π‘Œ ∨ 𝑋)) = ((π‘Œ ∨ 𝑋) ∨ 𝑍))
178, 12, 163eqtr4d 2776 1 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∨ (π‘Œ ∨ 𝑍)) = (𝑍 ∨ (π‘Œ ∨ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  joincjn 18274  Latclat 18394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18258  df-poset 18276  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-lat 18395
This theorem is referenced by:  3atlem1  38865  dalawlem3  39255  dalawlem6  39258  cdleme1  39609  cdleme11g  39647
  Copyright terms: Public domain W3C validator