Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latj13 | Structured version Visualization version GIF version |
Description: Swap 1st and 3rd members of lattice join. (Contributed by NM, 4-Jun-2012.) |
Ref | Expression |
---|---|
latjass.b | ⊢ 𝐵 = (Base‘𝐾) |
latjass.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latj13 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑍 ∨ (𝑌 ∨ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
2 | simpr2 1195 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
3 | simpr3 1196 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
4 | simpr1 1194 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
5 | latjass.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | latjass.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
7 | 5, 6 | latj32 18248 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑌 ∨ 𝑍) ∨ 𝑋) = ((𝑌 ∨ 𝑋) ∨ 𝑍)) |
8 | 1, 2, 3, 4, 7 | syl13anc 1372 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 ∨ 𝑍) ∨ 𝑋) = ((𝑌 ∨ 𝑋) ∨ 𝑍)) |
9 | 5, 6 | latjcl 18202 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∨ 𝑍) ∈ 𝐵) |
10 | 9 | 3adant3r1 1182 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑍) ∈ 𝐵) |
11 | 5, 6 | latjcom 18210 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∨ 𝑍) ∈ 𝐵) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑌 ∨ 𝑍) ∨ 𝑋)) |
12 | 1, 4, 10, 11 | syl3anc 1371 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑌 ∨ 𝑍) ∨ 𝑋)) |
13 | 5, 6 | latjcl 18202 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∨ 𝑋) ∈ 𝐵) |
14 | 1, 2, 4, 13 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑋) ∈ 𝐵) |
15 | 5, 6 | latjcom 18210 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ∧ (𝑌 ∨ 𝑋) ∈ 𝐵) → (𝑍 ∨ (𝑌 ∨ 𝑋)) = ((𝑌 ∨ 𝑋) ∨ 𝑍)) |
16 | 1, 3, 14, 15 | syl3anc 1371 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ∨ (𝑌 ∨ 𝑋)) = ((𝑌 ∨ 𝑋) ∨ 𝑍)) |
17 | 8, 12, 16 | 3eqtr4d 2786 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑍 ∨ (𝑌 ∨ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 joincjn 18074 Latclat 18194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-proset 18058 df-poset 18076 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-lat 18195 |
This theorem is referenced by: 3atlem1 37539 dalawlem3 37929 dalawlem6 37932 cdleme1 38283 cdleme11g 38321 |
Copyright terms: Public domain | W3C validator |