Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atmat Structured version   Visualization version   GIF version

Theorem 2atmat 37137
Description: The meet of two intersecting lines (expressed as joins of atoms) is an atom. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
2atmat.l = (le‘𝐾)
2atmat.j = (join‘𝐾)
2atmat.m = (meet‘𝐾)
2atmat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atmat (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)

Proof of Theorem 2atmat
StepHypRef Expression
1 simp11 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
21hllatd 36940 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
3 eqid 2758 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 2atmat.j . . . . . . 7 = (join‘𝐾)
5 2atmat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
63, 4, 5hlatjcl 36943 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
763ad2ant1 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
8 simp21 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
93, 5atbase 36865 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
108, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
11 simp22 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
123, 5atbase 36865 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
143, 4latjass 17771 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
152, 7, 10, 13, 14syl13anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
16 simp33 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ((𝑃 𝑄) 𝑅))
173, 4latjcl 17727 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
182, 7, 10, 17syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
19 2atmat.l . . . . . . 7 = (le‘𝐾)
203, 19, 4latleeqj2 17740 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
212, 13, 18, 20syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
2216, 21mpbid 235 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅))
2315, 22eqtr3d 2795 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
24 simp23 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝑄)
25 simp32 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 (𝑃 𝑄))
26 simp12 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
27 simp13 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
28 eqid 2758 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
2919, 4, 5, 28islpln2a 37124 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))))
301, 26, 27, 8, 29syl13anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))))
3124, 25, 30mpbir2and 712 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
3223, 31eqeltrd 2852 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾))
33 eqid 2758 . . . . 5 (LLines‘𝐾) = (LLines‘𝐾)
344, 5, 33llni2 37088 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
351, 26, 27, 24, 34syl31anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (LLines‘𝐾))
36 simp31 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝑆)
374, 5, 33llni2 37088 . . . 4 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
381, 8, 11, 36, 37syl31anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (LLines‘𝐾))
39 2atmat.m . . . 4 = (meet‘𝐾)
404, 39, 5, 33, 282llnmj 37136 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾)))
411, 35, 38, 40syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾)))
4232, 41mpbird 260 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5032  cfv 6335  (class class class)co 7150  Basecbs 16541  lecple 16630  joincjn 17620  meetcmee 17621  Latclat 17721  Atomscatm 36839  HLchlt 36926  LLinesclln 37067  LPlanesclpl 37068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17604  df-poset 17622  df-plt 17634  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-p0 17715  df-lat 17722  df-clat 17784  df-oposet 36752  df-ol 36754  df-oml 36755  df-covers 36842  df-ats 36843  df-atl 36874  df-cvlat 36898  df-hlat 36927  df-llines 37074  df-lplanes 37075
This theorem is referenced by:  4atexlemc  37645
  Copyright terms: Public domain W3C validator