Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atmat Structured version   Visualization version   GIF version

Theorem 2atmat 39544
Description: The meet of two intersecting lines (expressed as joins of atoms) is an atom. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
2atmat.l = (le‘𝐾)
2atmat.j = (join‘𝐾)
2atmat.m = (meet‘𝐾)
2atmat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atmat (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)

Proof of Theorem 2atmat
StepHypRef Expression
1 simp11 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
21hllatd 39347 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
3 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 2atmat.j . . . . . . 7 = (join‘𝐾)
5 2atmat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
63, 4, 5hlatjcl 39350 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
763ad2ant1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
8 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
93, 5atbase 39272 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
108, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
11 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
123, 5atbase 39272 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
143, 4latjass 18389 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
152, 7, 10, 13, 14syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
16 simp33 1212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ((𝑃 𝑄) 𝑅))
173, 4latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
182, 7, 10, 17syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
19 2atmat.l . . . . . . 7 = (le‘𝐾)
203, 19, 4latleeqj2 18358 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
212, 13, 18, 20syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
2216, 21mpbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅))
2315, 22eqtr3d 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
24 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝑄)
25 simp32 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 (𝑃 𝑄))
26 simp12 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
27 simp13 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
28 eqid 2729 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
2919, 4, 5, 28islpln2a 39531 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))))
301, 26, 27, 8, 29syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))))
3124, 25, 30mpbir2and 713 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
3223, 31eqeltrd 2828 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾))
33 eqid 2729 . . . . 5 (LLines‘𝐾) = (LLines‘𝐾)
344, 5, 33llni2 39495 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
351, 26, 27, 24, 34syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (LLines‘𝐾))
36 simp31 1210 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝑆)
374, 5, 33llni2 39495 . . . 4 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
381, 8, 11, 36, 37syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (LLines‘𝐾))
39 2atmat.m . . . 4 = (meet‘𝐾)
404, 39, 5, 33, 282llnmj 39543 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾)))
411, 35, 38, 40syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾)))
4232, 41mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39246  HLchlt 39333  LLinesclln 39474  LPlanesclpl 39475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482
This theorem is referenced by:  4atexlemc  40052
  Copyright terms: Public domain W3C validator