Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atmat Structured version   Visualization version   GIF version

Theorem 2atmat 39548
Description: The meet of two intersecting lines (expressed as joins of atoms) is an atom. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
2atmat.l = (le‘𝐾)
2atmat.j = (join‘𝐾)
2atmat.m = (meet‘𝐾)
2atmat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atmat (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)

Proof of Theorem 2atmat
StepHypRef Expression
1 simp11 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
21hllatd 39350 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
3 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 2atmat.j . . . . . . 7 = (join‘𝐾)
5 2atmat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
63, 4, 5hlatjcl 39353 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
763ad2ant1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
8 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
93, 5atbase 39275 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
108, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
11 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
123, 5atbase 39275 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
143, 4latjass 18424 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
152, 7, 10, 13, 14syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
16 simp33 1212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ((𝑃 𝑄) 𝑅))
173, 4latjcl 18380 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
182, 7, 10, 17syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
19 2atmat.l . . . . . . 7 = (le‘𝐾)
203, 19, 4latleeqj2 18393 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
212, 13, 18, 20syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
2216, 21mpbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅))
2315, 22eqtr3d 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
24 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝑄)
25 simp32 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 (𝑃 𝑄))
26 simp12 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
27 simp13 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
28 eqid 2729 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
2919, 4, 5, 28islpln2a 39535 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))))
301, 26, 27, 8, 29syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))))
3124, 25, 30mpbir2and 713 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
3223, 31eqeltrd 2828 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾))
33 eqid 2729 . . . . 5 (LLines‘𝐾) = (LLines‘𝐾)
344, 5, 33llni2 39499 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
351, 26, 27, 24, 34syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (LLines‘𝐾))
36 simp31 1210 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝑆)
374, 5, 33llni2 39499 . . . 4 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
381, 8, 11, 36, 37syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (LLines‘𝐾))
39 2atmat.m . . . 4 = (meet‘𝐾)
404, 39, 5, 33, 282llnmj 39547 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾)))
411, 35, 38, 40syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾)))
4232, 41mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  Latclat 18372  Atomscatm 39249  HLchlt 39336  LLinesclln 39478  LPlanesclpl 39479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486
This theorem is referenced by:  4atexlemc  40056
  Copyright terms: Public domain W3C validator