Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atmat Structured version   Visualization version   GIF version

Theorem 2atmat 39563
Description: The meet of two intersecting lines (expressed as joins of atoms) is an atom. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
2atmat.l = (le‘𝐾)
2atmat.j = (join‘𝐾)
2atmat.m = (meet‘𝐾)
2atmat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atmat (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)

Proof of Theorem 2atmat
StepHypRef Expression
1 simp11 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
21hllatd 39365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
3 eqid 2737 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
4 2atmat.j . . . . . . 7 = (join‘𝐾)
5 2atmat.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
63, 4, 5hlatjcl 39368 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
763ad2ant1 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
8 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
93, 5atbase 39290 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
108, 9syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
11 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
123, 5atbase 39290 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1311, 12syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
143, 4latjass 18528 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
152, 7, 10, 13, 14syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
16 simp33 1212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ((𝑃 𝑄) 𝑅))
173, 4latjcl 18484 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
182, 7, 10, 17syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
19 2atmat.l . . . . . . 7 = (le‘𝐾)
203, 19, 4latleeqj2 18497 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
212, 13, 18, 20syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
2216, 21mpbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅))
2315, 22eqtr3d 2779 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
24 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝑄)
25 simp32 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 (𝑃 𝑄))
26 simp12 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
27 simp13 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
28 eqid 2737 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
2919, 4, 5, 28islpln2a 39550 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))))
301, 26, 27, 8, 29syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))))
3124, 25, 30mpbir2and 713 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
3223, 31eqeltrd 2841 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾))
33 eqid 2737 . . . . 5 (LLines‘𝐾) = (LLines‘𝐾)
344, 5, 33llni2 39514 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
351, 26, 27, 24, 34syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (LLines‘𝐾))
36 simp31 1210 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝑆)
374, 5, 33llni2 39514 . . . 4 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
381, 8, 11, 36, 37syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (LLines‘𝐾))
39 2atmat.m . . . 4 = (meet‘𝐾)
404, 39, 5, 33, 282llnmj 39562 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾)))
411, 35, 38, 40syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (LPlanes‘𝐾)))
4232, 41mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  Latclat 18476  Atomscatm 39264  HLchlt 39351  LLinesclln 39493  LPlanesclpl 39494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501
This theorem is referenced by:  4atexlemc  40071
  Copyright terms: Public domain W3C validator