Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme30a Structured version   Visualization version   GIF version

Theorem cdleme30a 40343
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
cdleme30.b 𝐵 = (Base‘𝐾)
cdleme30.l = (le‘𝐾)
cdleme30.j = (join‘𝐾)
cdleme30.m = (meet‘𝐾)
cdleme30.a 𝐴 = (Atoms‘𝐾)
cdleme30.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme30a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)

Proof of Theorem cdleme30a
StepHypRef Expression
1 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
21hllatd 39328 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ Lat)
3 simp21 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐴)
4 cdleme30.b . . . . 5 𝐵 = (Base‘𝐾)
5 cdleme30.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 39253 . . . 4 (𝑠𝐴𝑠𝐵)
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐵)
8 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑌𝐵)
9 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐻)
10 cdleme30.h . . . . . 6 𝐻 = (LHyp‘𝐾)
114, 10lhpbase 39963 . . . . 5 (𝑊𝐻𝑊𝐵)
129, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐵)
13 cdleme30.m . . . . 5 = (meet‘𝐾)
144, 13latmcl 18448 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
152, 8, 12, 14syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 𝑊) ∈ 𝐵)
16 simp22l 1293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋𝐵)
17 cdleme30.j . . . 4 = (join‘𝐾)
184, 17latjass 18491 . . 3 ((𝐾 ∈ Lat ∧ (𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑋𝐵)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
192, 7, 15, 16, 18syl13anc 1374 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
20 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) = 𝑋)
21 simp3r 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 𝑌)
22 cdleme30.l . . . . . . . 8 = (le‘𝐾)
234, 22, 13latmlem1 18477 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
242, 16, 8, 12, 23syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
2521, 24mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) (𝑌 𝑊))
264, 13latmcl 18448 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
272, 16, 12, 26syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) ∈ 𝐵)
284, 22, 17latjlej2 18462 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑠𝐵)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
292, 27, 15, 7, 28syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
3025, 29mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊)))
3120, 30eqbrtrrd 5143 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 (𝑠 (𝑌 𝑊)))
324, 17latjcl 18447 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
332, 7, 15, 32syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
344, 22, 17latleeqj2 18460 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑠 (𝑌 𝑊)) ∈ 𝐵) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
352, 16, 33, 34syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
3631, 35mpbid 232 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊)))
37 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
384, 22, 17, 13, 10lhpmod2i2 40003 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
3937, 8, 16, 21, 38syl121anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
4039oveq2d 7419 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = (𝑠 (𝑌 (𝑊 𝑋))))
41 simp22 1208 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
42 eqid 2735 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
434, 22, 17, 42, 10lhpj1 39987 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = (1.‘𝐾))
4437, 41, 43syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑊 𝑋) = (1.‘𝐾))
4544oveq2d 7419 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = (𝑌 (1.‘𝐾)))
46 hlol 39325 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
471, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ OL)
484, 13, 42olm11 39191 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵) → (𝑌 (1.‘𝐾)) = 𝑌)
4947, 8, 48syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (1.‘𝐾)) = 𝑌)
5045, 49eqtrd 2770 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = 𝑌)
5150oveq2d 7419 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 (𝑊 𝑋))) = (𝑠 𝑌))
524, 22, 17latlej1 18456 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑠 (𝑠 (𝑋 𝑊)))
532, 7, 27, 52syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 (𝑠 (𝑋 𝑊)))
5453, 20breqtrd 5145 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑋)
554, 22, 2, 7, 16, 8, 54, 21lattrd 18454 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑌)
564, 22, 17latleeqj1 18459 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵𝑌𝐵) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
572, 7, 8, 56syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
5855, 57mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌) = 𝑌)
5940, 51, 583eqtrd 2774 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = 𝑌)
6019, 36, 593eqtr3d 2778 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  joincjn 18321  meetcmee 18322  1.cp1 18432  Latclat 18439  OLcol 39138  Atomscatm 39227  HLchlt 39314  LHypclh 39949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-p1 18434  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-psubsp 39468  df-pmap 39469  df-padd 39761  df-lhyp 39953
This theorem is referenced by:  cdleme32b  40407
  Copyright terms: Public domain W3C validator