Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme30a Structured version   Visualization version   GIF version

Theorem cdleme30a 36337
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
cdleme30.b 𝐵 = (Base‘𝐾)
cdleme30.l = (le‘𝐾)
cdleme30.j = (join‘𝐾)
cdleme30.m = (meet‘𝐾)
cdleme30.a 𝐴 = (Atoms‘𝐾)
cdleme30.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme30a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)

Proof of Theorem cdleme30a
StepHypRef Expression
1 simp1l 1254 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
21hllatd 35323 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ Lat)
3 simp21 1263 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐴)
4 cdleme30.b . . . . 5 𝐵 = (Base‘𝐾)
5 cdleme30.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 35248 . . . 4 (𝑠𝐴𝑠𝐵)
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐵)
8 simp23 1265 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑌𝐵)
9 simp1r 1255 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐻)
10 cdleme30.h . . . . . 6 𝐻 = (LHyp‘𝐾)
114, 10lhpbase 35957 . . . . 5 (𝑊𝐻𝑊𝐵)
129, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐵)
13 cdleme30.m . . . . 5 = (meet‘𝐾)
144, 13latmcl 17321 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
152, 8, 12, 14syl3anc 1490 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 𝑊) ∈ 𝐵)
16 simp22l 1391 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋𝐵)
17 cdleme30.j . . . 4 = (join‘𝐾)
184, 17latjass 17364 . . 3 ((𝐾 ∈ Lat ∧ (𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑋𝐵)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
192, 7, 15, 16, 18syl13anc 1491 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
20 simp3l 1258 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) = 𝑋)
21 simp3r 1259 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 𝑌)
22 cdleme30.l . . . . . . . 8 = (le‘𝐾)
234, 22, 13latmlem1 17350 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
242, 16, 8, 12, 23syl13anc 1491 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
2521, 24mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) (𝑌 𝑊))
264, 13latmcl 17321 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
272, 16, 12, 26syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) ∈ 𝐵)
284, 22, 17latjlej2 17335 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑠𝐵)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
292, 27, 15, 7, 28syl13anc 1491 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
3025, 29mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊)))
3120, 30eqbrtrrd 4835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 (𝑠 (𝑌 𝑊)))
324, 17latjcl 17320 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
332, 7, 15, 32syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
344, 22, 17latleeqj2 17333 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑠 (𝑌 𝑊)) ∈ 𝐵) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
352, 16, 33, 34syl3anc 1490 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
3631, 35mpbid 223 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊)))
37 simp1 1166 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
384, 22, 17, 13, 10lhpmod2i2 35997 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
3937, 8, 16, 21, 38syl121anc 1494 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
4039oveq2d 6860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = (𝑠 (𝑌 (𝑊 𝑋))))
41 simp22 1264 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
42 eqid 2765 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
434, 22, 17, 42, 10lhpj1 35981 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = (1.‘𝐾))
4437, 41, 43syl2anc 579 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑊 𝑋) = (1.‘𝐾))
4544oveq2d 6860 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = (𝑌 (1.‘𝐾)))
46 hlol 35320 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
471, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ OL)
484, 13, 42olm11 35186 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵) → (𝑌 (1.‘𝐾)) = 𝑌)
4947, 8, 48syl2anc 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (1.‘𝐾)) = 𝑌)
5045, 49eqtrd 2799 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = 𝑌)
5150oveq2d 6860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 (𝑊 𝑋))) = (𝑠 𝑌))
524, 22, 17latlej1 17329 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑠 (𝑠 (𝑋 𝑊)))
532, 7, 27, 52syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 (𝑠 (𝑋 𝑊)))
5453, 20breqtrd 4837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑋)
554, 22, 2, 7, 16, 8, 54, 21lattrd 17327 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑌)
564, 22, 17latleeqj1 17332 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵𝑌𝐵) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
572, 7, 8, 56syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
5855, 57mpbid 223 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌) = 𝑌)
5940, 51, 583eqtrd 2803 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = 𝑌)
6019, 36, 593eqtr3d 2807 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4811  cfv 6070  (class class class)co 6844  Basecbs 16133  lecple 16224  joincjn 17213  meetcmee 17214  1.cp1 17307  Latclat 17314  OLcol 35133  Atomscatm 35222  HLchlt 35309  LHypclh 35943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-1st 7368  df-2nd 7369  df-proset 17197  df-poset 17215  df-plt 17227  df-lub 17243  df-glb 17244  df-join 17245  df-meet 17246  df-p0 17308  df-p1 17309  df-lat 17315  df-clat 17377  df-oposet 35135  df-ol 35137  df-oml 35138  df-covers 35225  df-ats 35226  df-atl 35257  df-cvlat 35281  df-hlat 35310  df-psubsp 35462  df-pmap 35463  df-padd 35755  df-lhyp 35947
This theorem is referenced by:  cdleme32b  36401
  Copyright terms: Public domain W3C validator