Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme30a Structured version   Visualization version   GIF version

Theorem cdleme30a 39907
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
cdleme30.b 𝐡 = (Baseβ€˜πΎ)
cdleme30.l ≀ = (leβ€˜πΎ)
cdleme30.j ∨ = (joinβ€˜πΎ)
cdleme30.m ∧ = (meetβ€˜πΎ)
cdleme30.a 𝐴 = (Atomsβ€˜πΎ)
cdleme30.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
cdleme30a (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ)

Proof of Theorem cdleme30a
StepHypRef Expression
1 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝐾 ∈ HL)
21hllatd 38892 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝐾 ∈ Lat)
3 simp21 1203 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑠 ∈ 𝐴)
4 cdleme30.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
5 cdleme30.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38817 . . . 4 (𝑠 ∈ 𝐴 β†’ 𝑠 ∈ 𝐡)
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑠 ∈ 𝐡)
8 simp23 1205 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ π‘Œ ∈ 𝐡)
9 simp1r 1195 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ π‘Š ∈ 𝐻)
10 cdleme30.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
114, 10lhpbase 39527 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
129, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ π‘Š ∈ 𝐡)
13 cdleme30.m . . . . 5 ∧ = (meetβ€˜πΎ)
144, 13latmcl 18431 . . . 4 ((𝐾 ∈ Lat ∧ π‘Œ ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (π‘Œ ∧ π‘Š) ∈ 𝐡)
152, 8, 12, 14syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (π‘Œ ∧ π‘Š) ∈ 𝐡)
16 simp22l 1289 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑋 ∈ 𝐡)
17 cdleme30.j . . . 4 ∨ = (joinβ€˜πΎ)
184, 17latjass 18474 . . 3 ((𝐾 ∈ Lat ∧ (𝑠 ∈ 𝐡 ∧ (π‘Œ ∧ π‘Š) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ ((𝑠 ∨ (π‘Œ ∧ π‘Š)) ∨ 𝑋) = (𝑠 ∨ ((π‘Œ ∧ π‘Š) ∨ 𝑋)))
192, 7, 15, 16, 18syl13anc 1369 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ ((𝑠 ∨ (π‘Œ ∧ π‘Š)) ∨ 𝑋) = (𝑠 ∨ ((π‘Œ ∧ π‘Š) ∨ 𝑋)))
20 simp3l 1198 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋)
21 simp3r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
22 cdleme30.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
234, 22, 13latmlem1 18460 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ π‘Š ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑋 ∧ π‘Š) ≀ (π‘Œ ∧ π‘Š)))
242, 16, 8, 12, 23syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑋 ≀ π‘Œ β†’ (𝑋 ∧ π‘Š) ≀ (π‘Œ ∧ π‘Š)))
2521, 24mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑋 ∧ π‘Š) ≀ (π‘Œ ∧ π‘Š))
264, 13latmcl 18431 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
272, 16, 12, 26syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
284, 22, 17latjlej2 18445 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑋 ∧ π‘Š) ∈ 𝐡 ∧ (π‘Œ ∧ π‘Š) ∈ 𝐡 ∧ 𝑠 ∈ 𝐡)) β†’ ((𝑋 ∧ π‘Š) ≀ (π‘Œ ∧ π‘Š) β†’ (𝑠 ∨ (𝑋 ∧ π‘Š)) ≀ (𝑠 ∨ (π‘Œ ∧ π‘Š))))
292, 27, 15, 7, 28syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ ((𝑋 ∧ π‘Š) ≀ (π‘Œ ∧ π‘Š) β†’ (𝑠 ∨ (𝑋 ∧ π‘Š)) ≀ (𝑠 ∨ (π‘Œ ∧ π‘Š))))
3025, 29mpd 15 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (𝑋 ∧ π‘Š)) ≀ (𝑠 ∨ (π‘Œ ∧ π‘Š)))
3120, 30eqbrtrrd 5167 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑋 ≀ (𝑠 ∨ (π‘Œ ∧ π‘Š)))
324, 17latjcl 18430 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠 ∈ 𝐡 ∧ (π‘Œ ∧ π‘Š) ∈ 𝐡) β†’ (𝑠 ∨ (π‘Œ ∧ π‘Š)) ∈ 𝐡)
332, 7, 15, 32syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (π‘Œ ∧ π‘Š)) ∈ 𝐡)
344, 22, 17latleeqj2 18443 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ (𝑠 ∨ (π‘Œ ∧ π‘Š)) ∈ 𝐡) β†’ (𝑋 ≀ (𝑠 ∨ (π‘Œ ∧ π‘Š)) ↔ ((𝑠 ∨ (π‘Œ ∧ π‘Š)) ∨ 𝑋) = (𝑠 ∨ (π‘Œ ∧ π‘Š))))
352, 16, 33, 34syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑋 ≀ (𝑠 ∨ (π‘Œ ∧ π‘Š)) ↔ ((𝑠 ∨ (π‘Œ ∧ π‘Š)) ∨ 𝑋) = (𝑠 ∨ (π‘Œ ∧ π‘Š))))
3631, 35mpbid 231 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ ((𝑠 ∨ (π‘Œ ∧ π‘Š)) ∨ 𝑋) = (𝑠 ∨ (π‘Œ ∧ π‘Š)))
37 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
384, 22, 17, 13, 10lhpmod2i2 39567 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Œ ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) ∧ 𝑋 ≀ π‘Œ) β†’ ((π‘Œ ∧ π‘Š) ∨ 𝑋) = (π‘Œ ∧ (π‘Š ∨ 𝑋)))
3937, 8, 16, 21, 38syl121anc 1372 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ ((π‘Œ ∧ π‘Š) ∨ 𝑋) = (π‘Œ ∧ (π‘Š ∨ 𝑋)))
4039oveq2d 7432 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ ((π‘Œ ∧ π‘Š) ∨ 𝑋)) = (𝑠 ∨ (π‘Œ ∧ (π‘Š ∨ 𝑋))))
41 simp22 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š))
42 eqid 2725 . . . . . . . 8 (1.β€˜πΎ) = (1.β€˜πΎ)
434, 22, 17, 42, 10lhpj1 39551 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (π‘Š ∨ 𝑋) = (1.β€˜πΎ))
4437, 41, 43syl2anc 582 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (π‘Š ∨ 𝑋) = (1.β€˜πΎ))
4544oveq2d 7432 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (π‘Œ ∧ (π‘Š ∨ 𝑋)) = (π‘Œ ∧ (1.β€˜πΎ)))
46 hlol 38889 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
471, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝐾 ∈ OL)
484, 13, 42olm11 38755 . . . . . 6 ((𝐾 ∈ OL ∧ π‘Œ ∈ 𝐡) β†’ (π‘Œ ∧ (1.β€˜πΎ)) = π‘Œ)
4947, 8, 48syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (π‘Œ ∧ (1.β€˜πΎ)) = π‘Œ)
5045, 49eqtrd 2765 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (π‘Œ ∧ (π‘Š ∨ 𝑋)) = π‘Œ)
5150oveq2d 7432 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (π‘Œ ∧ (π‘Š ∨ 𝑋))) = (𝑠 ∨ π‘Œ))
524, 22, 17latlej1 18439 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑠 ∈ 𝐡 ∧ (𝑋 ∧ π‘Š) ∈ 𝐡) β†’ 𝑠 ≀ (𝑠 ∨ (𝑋 ∧ π‘Š)))
532, 7, 27, 52syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑠 ≀ (𝑠 ∨ (𝑋 ∧ π‘Š)))
5453, 20breqtrd 5169 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑠 ≀ 𝑋)
554, 22, 2, 7, 16, 8, 54, 21lattrd 18437 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ 𝑠 ≀ π‘Œ)
564, 22, 17latleeqj1 18442 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑠 ≀ π‘Œ ↔ (𝑠 ∨ π‘Œ) = π‘Œ))
572, 7, 8, 56syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ≀ π‘Œ ↔ (𝑠 ∨ π‘Œ) = π‘Œ))
5855, 57mpbid 231 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ π‘Œ) = π‘Œ)
5940, 51, 583eqtrd 2769 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ ((π‘Œ ∧ π‘Š) ∨ 𝑋)) = π‘Œ)
6019, 36, 593eqtr3d 2773 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋 ∧ 𝑋 ≀ π‘Œ)) β†’ (𝑠 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  1.cp1 18415  Latclat 18422  OLcol 38702  Atomscatm 38791  HLchlt 38878  LHypclh 39513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-psubsp 39032  df-pmap 39033  df-padd 39325  df-lhyp 39517
This theorem is referenced by:  cdleme32b  39971
  Copyright terms: Public domain W3C validator