Proof of Theorem cdleme30a
Step | Hyp | Ref
| Expression |
1 | | simp1l 1196 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37378 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ Lat) |
3 | | simp21 1205 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑠 ∈ 𝐴) |
4 | | cdleme30.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
5 | | cdleme30.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atbase 37303 |
. . . 4
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ 𝐵) |
7 | 3, 6 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑠 ∈ 𝐵) |
8 | | simp23 1207 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑌 ∈ 𝐵) |
9 | | simp1r 1197 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑊 ∈ 𝐻) |
10 | | cdleme30.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
11 | 4, 10 | lhpbase 38012 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
12 | 9, 11 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑊 ∈ 𝐵) |
13 | | cdleme30.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
14 | 4, 13 | latmcl 18158 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
15 | 2, 8, 12, 14 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
16 | | simp22l 1291 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ∈ 𝐵) |
17 | | cdleme30.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
18 | 4, 17 | latjass 18201 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑠 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑠 ∨ (𝑌 ∧ 𝑊)) ∨ 𝑋) = (𝑠 ∨ ((𝑌 ∧ 𝑊) ∨ 𝑋))) |
19 | 2, 7, 15, 16, 18 | syl13anc 1371 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → ((𝑠 ∨ (𝑌 ∧ 𝑊)) ∨ 𝑋) = (𝑠 ∨ ((𝑌 ∧ 𝑊) ∨ 𝑋))) |
20 | | simp3l 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
21 | | simp3r 1201 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ≤ 𝑌) |
22 | | cdleme30.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
23 | 4, 22, 13 | latmlem1 18187 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊))) |
24 | 2, 16, 8, 12, 23 | syl13anc 1371 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊))) |
25 | 21, 24 | mpd 15 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |
26 | 4, 13 | latmcl 18158 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
27 | 2, 16, 12, 26 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
28 | 4, 22, 17 | latjlej2 18172 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵 ∧ 𝑠 ∈ 𝐵)) → ((𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊) → (𝑠 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑠 ∨ (𝑌 ∧ 𝑊)))) |
29 | 2, 27, 15, 7, 28 | syl13anc 1371 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → ((𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊) → (𝑠 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑠 ∨ (𝑌 ∧ 𝑊)))) |
30 | 25, 29 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑠 ∨ (𝑌 ∧ 𝑊))) |
31 | 20, 30 | eqbrtrrd 5098 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ≤ (𝑠 ∨ (𝑌 ∧ 𝑊))) |
32 | 4, 17 | latjcl 18157 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑠 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵) → (𝑠 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) |
33 | 2, 7, 15, 32 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) |
34 | 4, 22, 17 | latleeqj2 18170 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) → (𝑋 ≤ (𝑠 ∨ (𝑌 ∧ 𝑊)) ↔ ((𝑠 ∨ (𝑌 ∧ 𝑊)) ∨ 𝑋) = (𝑠 ∨ (𝑌 ∧ 𝑊)))) |
35 | 2, 16, 33, 34 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ≤ (𝑠 ∨ (𝑌 ∧ 𝑊)) ↔ ((𝑠 ∨ (𝑌 ∧ 𝑊)) ∨ 𝑋) = (𝑠 ∨ (𝑌 ∧ 𝑊)))) |
36 | 31, 35 | mpbid 231 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → ((𝑠 ∨ (𝑌 ∧ 𝑊)) ∨ 𝑋) = (𝑠 ∨ (𝑌 ∧ 𝑊))) |
37 | | simp1 1135 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
38 | 4, 22, 17, 13, 10 | lhpmod2i2 38052 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑌 ∧ 𝑊) ∨ 𝑋) = (𝑌 ∧ (𝑊 ∨ 𝑋))) |
39 | 37, 8, 16, 21, 38 | syl121anc 1374 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → ((𝑌 ∧ 𝑊) ∨ 𝑋) = (𝑌 ∧ (𝑊 ∨ 𝑋))) |
40 | 39 | oveq2d 7291 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ ((𝑌 ∧ 𝑊) ∨ 𝑋)) = (𝑠 ∨ (𝑌 ∧ (𝑊 ∨ 𝑋)))) |
41 | | simp22 1206 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
42 | | eqid 2738 |
. . . . . . . 8
⊢
(1.‘𝐾) =
(1.‘𝐾) |
43 | 4, 22, 17, 42, 10 | lhpj1 38036 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊 ∨ 𝑋) = (1.‘𝐾)) |
44 | 37, 41, 43 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑊 ∨ 𝑋) = (1.‘𝐾)) |
45 | 44 | oveq2d 7291 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑌 ∧ (𝑊 ∨ 𝑋)) = (𝑌 ∧ (1.‘𝐾))) |
46 | | hlol 37375 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
47 | 1, 46 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ OL) |
48 | 4, 13, 42 | olm11 37241 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵) → (𝑌 ∧ (1.‘𝐾)) = 𝑌) |
49 | 47, 8, 48 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑌 ∧ (1.‘𝐾)) = 𝑌) |
50 | 45, 49 | eqtrd 2778 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑌 ∧ (𝑊 ∨ 𝑋)) = 𝑌) |
51 | 50 | oveq2d 7291 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ (𝑌 ∧ (𝑊 ∨ 𝑋))) = (𝑠 ∨ 𝑌)) |
52 | 4, 22, 17 | latlej1 18166 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑠 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → 𝑠 ≤ (𝑠 ∨ (𝑋 ∧ 𝑊))) |
53 | 2, 7, 27, 52 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑠 ≤ (𝑠 ∨ (𝑋 ∧ 𝑊))) |
54 | 53, 20 | breqtrd 5100 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑠 ≤ 𝑋) |
55 | 4, 22, 2, 7, 16, 8,
54, 21 | lattrd 18164 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → 𝑠 ≤ 𝑌) |
56 | 4, 22, 17 | latleeqj1 18169 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑠 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑠 ≤ 𝑌 ↔ (𝑠 ∨ 𝑌) = 𝑌)) |
57 | 2, 7, 8, 56 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ≤ 𝑌 ↔ (𝑠 ∨ 𝑌) = 𝑌)) |
58 | 55, 57 | mpbid 231 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ 𝑌) = 𝑌) |
59 | 40, 51, 58 | 3eqtrd 2782 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ ((𝑌 ∧ 𝑊) ∨ 𝑋)) = 𝑌) |
60 | 19, 36, 59 | 3eqtr3d 2786 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌) |