Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme30a Structured version   Visualization version   GIF version

Theorem cdleme30a 37400
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
cdleme30.b 𝐵 = (Base‘𝐾)
cdleme30.l = (le‘𝐾)
cdleme30.j = (join‘𝐾)
cdleme30.m = (meet‘𝐾)
cdleme30.a 𝐴 = (Atoms‘𝐾)
cdleme30.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme30a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)

Proof of Theorem cdleme30a
StepHypRef Expression
1 simp1l 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
21hllatd 36386 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ Lat)
3 simp21 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐴)
4 cdleme30.b . . . . 5 𝐵 = (Base‘𝐾)
5 cdleme30.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 36311 . . . 4 (𝑠𝐴𝑠𝐵)
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐵)
8 simp23 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑌𝐵)
9 simp1r 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐻)
10 cdleme30.h . . . . . 6 𝐻 = (LHyp‘𝐾)
114, 10lhpbase 37020 . . . . 5 (𝑊𝐻𝑊𝐵)
129, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐵)
13 cdleme30.m . . . . 5 = (meet‘𝐾)
144, 13latmcl 17657 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
152, 8, 12, 14syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 𝑊) ∈ 𝐵)
16 simp22l 1286 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋𝐵)
17 cdleme30.j . . . 4 = (join‘𝐾)
184, 17latjass 17700 . . 3 ((𝐾 ∈ Lat ∧ (𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑋𝐵)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
192, 7, 15, 16, 18syl13anc 1366 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
20 simp3l 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) = 𝑋)
21 simp3r 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 𝑌)
22 cdleme30.l . . . . . . . 8 = (le‘𝐾)
234, 22, 13latmlem1 17686 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
242, 16, 8, 12, 23syl13anc 1366 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
2521, 24mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) (𝑌 𝑊))
264, 13latmcl 17657 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
272, 16, 12, 26syl3anc 1365 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) ∈ 𝐵)
284, 22, 17latjlej2 17671 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑠𝐵)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
292, 27, 15, 7, 28syl13anc 1366 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
3025, 29mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊)))
3120, 30eqbrtrrd 5087 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 (𝑠 (𝑌 𝑊)))
324, 17latjcl 17656 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
332, 7, 15, 32syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
344, 22, 17latleeqj2 17669 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑠 (𝑌 𝑊)) ∈ 𝐵) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
352, 16, 33, 34syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
3631, 35mpbid 233 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊)))
37 simp1 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
384, 22, 17, 13, 10lhpmod2i2 37060 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
3937, 8, 16, 21, 38syl121anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
4039oveq2d 7166 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = (𝑠 (𝑌 (𝑊 𝑋))))
41 simp22 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
42 eqid 2826 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
434, 22, 17, 42, 10lhpj1 37044 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = (1.‘𝐾))
4437, 41, 43syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑊 𝑋) = (1.‘𝐾))
4544oveq2d 7166 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = (𝑌 (1.‘𝐾)))
46 hlol 36383 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
471, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ OL)
484, 13, 42olm11 36249 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵) → (𝑌 (1.‘𝐾)) = 𝑌)
4947, 8, 48syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (1.‘𝐾)) = 𝑌)
5045, 49eqtrd 2861 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = 𝑌)
5150oveq2d 7166 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 (𝑊 𝑋))) = (𝑠 𝑌))
524, 22, 17latlej1 17665 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑠 (𝑠 (𝑋 𝑊)))
532, 7, 27, 52syl3anc 1365 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 (𝑠 (𝑋 𝑊)))
5453, 20breqtrd 5089 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑋)
554, 22, 2, 7, 16, 8, 54, 21lattrd 17663 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑌)
564, 22, 17latleeqj1 17668 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵𝑌𝐵) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
572, 7, 8, 56syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
5855, 57mpbid 233 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌) = 𝑌)
5940, 51, 583eqtrd 2865 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = 𝑌)
6019, 36, 593eqtr3d 2869 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5063  cfv 6354  (class class class)co 7150  Basecbs 16478  lecple 16567  joincjn 17549  meetcmee 17550  1.cp1 17643  Latclat 17650  OLcol 36196  Atomscatm 36285  HLchlt 36372  LHypclh 37006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36198  df-ol 36200  df-oml 36201  df-covers 36288  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373  df-psubsp 36525  df-pmap 36526  df-padd 36818  df-lhyp 37010
This theorem is referenced by:  cdleme32b  37464
  Copyright terms: Public domain W3C validator