Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme30a Structured version   Visualization version   GIF version

Theorem cdleme30a 40379
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
cdleme30.b 𝐵 = (Base‘𝐾)
cdleme30.l = (le‘𝐾)
cdleme30.j = (join‘𝐾)
cdleme30.m = (meet‘𝐾)
cdleme30.a 𝐴 = (Atoms‘𝐾)
cdleme30.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme30a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)

Proof of Theorem cdleme30a
StepHypRef Expression
1 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ HL)
21hllatd 39364 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ Lat)
3 simp21 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐴)
4 cdleme30.b . . . . 5 𝐵 = (Base‘𝐾)
5 cdleme30.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 39289 . . . 4 (𝑠𝐴𝑠𝐵)
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠𝐵)
8 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑌𝐵)
9 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐻)
10 cdleme30.h . . . . . 6 𝐻 = (LHyp‘𝐾)
114, 10lhpbase 39999 . . . . 5 (𝑊𝐻𝑊𝐵)
129, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑊𝐵)
13 cdleme30.m . . . . 5 = (meet‘𝐾)
144, 13latmcl 18406 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
152, 8, 12, 14syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 𝑊) ∈ 𝐵)
16 simp22l 1293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋𝐵)
17 cdleme30.j . . . 4 = (join‘𝐾)
184, 17latjass 18449 . . 3 ((𝐾 ∈ Lat ∧ (𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑋𝐵)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
192, 7, 15, 16, 18syl13anc 1374 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 ((𝑌 𝑊) 𝑋)))
20 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) = 𝑋)
21 simp3r 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 𝑌)
22 cdleme30.l . . . . . . . 8 = (le‘𝐾)
234, 22, 13latmlem1 18435 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
242, 16, 8, 12, 23syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
2521, 24mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) (𝑌 𝑊))
264, 13latmcl 18406 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
272, 16, 12, 26syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 𝑊) ∈ 𝐵)
284, 22, 17latjlej2 18420 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵𝑠𝐵)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
292, 27, 15, 7, 28syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑋 𝑊) (𝑌 𝑊) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊))))
3025, 29mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑋 𝑊)) (𝑠 (𝑌 𝑊)))
3120, 30eqbrtrrd 5134 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑋 (𝑠 (𝑌 𝑊)))
324, 17latjcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
332, 7, 15, 32syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) ∈ 𝐵)
344, 22, 17latleeqj2 18418 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑠 (𝑌 𝑊)) ∈ 𝐵) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
352, 16, 33, 34syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋 (𝑠 (𝑌 𝑊)) ↔ ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊))))
3631, 35mpbid 232 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑠 (𝑌 𝑊)) 𝑋) = (𝑠 (𝑌 𝑊)))
37 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
384, 22, 17, 13, 10lhpmod2i2 40039 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
3937, 8, 16, 21, 38syl121anc 1377 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → ((𝑌 𝑊) 𝑋) = (𝑌 (𝑊 𝑋)))
4039oveq2d 7406 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = (𝑠 (𝑌 (𝑊 𝑋))))
41 simp22 1208 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
42 eqid 2730 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
434, 22, 17, 42, 10lhpj1 40023 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = (1.‘𝐾))
4437, 41, 43syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑊 𝑋) = (1.‘𝐾))
4544oveq2d 7406 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = (𝑌 (1.‘𝐾)))
46 hlol 39361 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
471, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝐾 ∈ OL)
484, 13, 42olm11 39227 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵) → (𝑌 (1.‘𝐾)) = 𝑌)
4947, 8, 48syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (1.‘𝐾)) = 𝑌)
5045, 49eqtrd 2765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑌 (𝑊 𝑋)) = 𝑌)
5150oveq2d 7406 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 (𝑊 𝑋))) = (𝑠 𝑌))
524, 22, 17latlej1 18414 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑠𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑠 (𝑠 (𝑋 𝑊)))
532, 7, 27, 52syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 (𝑠 (𝑋 𝑊)))
5453, 20breqtrd 5136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑋)
554, 22, 2, 7, 16, 8, 54, 21lattrd 18412 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → 𝑠 𝑌)
564, 22, 17latleeqj1 18417 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑠𝐵𝑌𝐵) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
572, 7, 8, 56syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌 ↔ (𝑠 𝑌) = 𝑌))
5855, 57mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 𝑌) = 𝑌)
5940, 51, 583eqtrd 2769 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 ((𝑌 𝑊) 𝑋)) = 𝑌)
6019, 36, 593eqtr3d 2773 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐴 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  1.cp1 18390  Latclat 18397  OLcol 39174  Atomscatm 39263  HLchlt 39350  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989
This theorem is referenced by:  cdleme32b  40443
  Copyright terms: Public domain W3C validator