MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letrid Structured version   Visualization version   GIF version

Theorem letrid 11326
Description: Trichotomy law for 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
letrid (𝜑 → (𝐴𝐵𝐵𝐴))

Proof of Theorem letrid
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 letric 11274 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2109   class class class wbr 5107  cr 11067  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-pre-lttri 11142
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  isprm5  16677  pcfac  16870  zntoslem  21466  minveclem3b  25328  itgsubstlem  25955  pntpbnd1  27497  pntpbnd2  27498  axcontlem4  28894  minvecolem5  30810  dnibnd  36479  heiborlem6  37810  fzuntd  43445
  Copyright terms: Public domain W3C validator