MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leltned Structured version   Visualization version   GIF version

Theorem leltned 11417
Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
leltned.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
leltned (𝜑 → (𝐴 < 𝐵𝐵𝐴))

Proof of Theorem leltned
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 leltned.3 . 2 (𝜑𝐴𝐵)
4 leltne 11353 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
51, 2, 3, 4syl3anc 1368 1 (𝜑 → (𝐴 < 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2099  wne 2930   class class class wbr 5153  cr 11157   < clt 11298  cle 11299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-pre-lttri 11232  ax-pre-lttrn 11233
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304
This theorem is referenced by:  leneltd  11418  nn01to3  12977  elfznelfzo  13792  absgt0  15329  blcvx  24805  dchrelbas4  27272  clwlkclwwlklem2a4  29930  eucrct2eupth  30178  erdszelem9  35027  areacirc  37414  fzne2d  41679  sticksstones12a  41855  sticksstones12  41856  metakunt24  41914  metakunt28  41918  requad2  47195
  Copyright terms: Public domain W3C validator