MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leltned Structured version   Visualization version   GIF version

Theorem leltned 10478
Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
leltned.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
leltned (𝜑 → (𝐴 < 𝐵𝐵𝐴))

Proof of Theorem leltned
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 leltned.3 . 2 (𝜑𝐴𝐵)
4 leltne 10415 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
51, 2, 3, 4syl3anc 1491 1 (𝜑 → (𝐴 < 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2157  wne 2969   class class class wbr 4841  cr 10221   < clt 10361  cle 10362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-resscn 10279  ax-pre-lttri 10296  ax-pre-lttrn 10297
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367
This theorem is referenced by:  leneltd  10479  nn01to3  12022  elfznelfzo  12824  absgt0  14402  blcvx  22926  pmltpclem2  23554  abelthlem2  24524  logcj  24690  argimgt0  24696  dvloglem  24732  logf1o2  24734  asinneg  24962  dchrelbas4  25317  lgseisen  25453  m1lgs  25462  dchrisum0flblem1  25546  clwlkclwwlklem2a4  27282  eucrct2eupthOLD  27583  eucrct2eupth  27584  erdszelem9  31690  areacirc  33985
  Copyright terms: Public domain W3C validator