Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > letric | Structured version Visualization version GIF version |
Description: Trichotomy law. (Contributed by NM, 18-Aug-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
letric | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnle 11082 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | |
2 | ltle 11091 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) | |
3 | 1, 2 | sylbird 259 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (¬ 𝐴 ≤ 𝐵 → 𝐵 ≤ 𝐴)) |
4 | 3 | orrd 859 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
5 | 4 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2101 class class class wbr 5077 ℝcr 10898 < clt 11037 ≤ cle 11038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-pre-lttri 10973 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 |
This theorem is referenced by: lecasei 11109 letrid 11155 relin01 11527 avgle 12243 elz2 12365 uztric 12634 xrsupsslem 13069 xrinfmsslem 13070 sqrlem6 14987 resqrex 14990 absor 15040 fzomaxdif 15083 xrsdsreval 20671 elii2 24127 xrhmeo 24137 pcoass 24215 pilem2 25639 pntpbnd1 26762 axcontlem2 27361 icoreclin 35556 poimir 35838 oddcomabszz 40790 zindbi 40792 fzunt 41086 |
Copyright terms: Public domain | W3C validator |