MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letric Structured version   Visualization version   GIF version

Theorem letric 11216
Description: Trichotomy law. (Contributed by NM, 18-Aug-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
letric ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))

Proof of Theorem letric
StepHypRef Expression
1 ltnle 11195 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
2 ltle 11204 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
31, 2sylbird 260 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (¬ 𝐴𝐵𝐵𝐴))
43orrd 863 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
54ancoms 458 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2109   class class class wbr 5092  cr 11008   < clt 11149  cle 11150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-pre-lttri 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155
This theorem is referenced by:  lecasei  11222  letrid  11268  relin01  11644  avgle  12366  elz2  12489  uztric  12759  xrsupsslem  13209  xrinfmsslem  13210  01sqrexlem6  15154  resqrex  15157  absor  15207  fzomaxdif  15251  xrsdsreval  21318  elii2  24830  xrhmeo  24842  pcoass  24922  pilem2  26360  pntpbnd1  27495  axcontlem2  28910  icoreclin  37335  poimir  37637  oddcomabszz  42921  zindbi  42923  fzunt  43432  squeezedltsq  46874
  Copyright terms: Public domain W3C validator