MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letric Structured version   Visualization version   GIF version

Theorem letric 10732
Description: Trichotomy law. (Contributed by NM, 18-Aug-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
letric ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))

Proof of Theorem letric
StepHypRef Expression
1 ltnle 10712 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
2 ltle 10721 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
31, 2sylbird 261 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (¬ 𝐴𝐵𝐵𝐴))
43orrd 859 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
54ancoms 459 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 843  wcel 2107   class class class wbr 5062  cr 10528   < clt 10667  cle 10668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-pre-lttri 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673
This theorem is referenced by:  lecasei  10738  letrid  10784  relin01  11156  avgle  11871  elz2  11991  uztric  12258  xrsupsslem  12693  xrinfmsslem  12694  sqrlem6  14600  resqrex  14603  absor  14653  fzomaxdif  14696  xrsdsreval  20508  elii2  23457  xrhmeo  23467  pcoass  23545  pilem2  24957  pntpbnd1  26078  axcontlem2  26667  icoreclin  34509  poimir  34794  oddcomabszz  39408  zindbi  39410
  Copyright terms: Public domain W3C validator