Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmdisj3a | Structured version Visualization version GIF version |
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
lsmdisj3b.z | ⊢ 𝑍 = (Cntz‘𝐺) |
lsmdisj3a.2 | ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) |
Ref | Expression |
---|---|
lsmdisj3a | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | lsmcntz.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | lsmdisj3a.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) | |
4 | lsmcntz.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝐺) | |
5 | lsmdisj3b.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝐺) | |
6 | 4, 5 | lsmcom2 19336 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝑆 ⊕ 𝑇) = (𝑇 ⊕ 𝑆)) |
7 | 1, 2, 3, 6 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑆 ⊕ 𝑇) = (𝑇 ⊕ 𝑆)) |
8 | 7 | ineq1d 4156 | . . . 4 ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = ((𝑇 ⊕ 𝑆) ∩ 𝑈)) |
9 | 8 | eqeq1d 2739 | . . 3 ⊢ (𝜑 → (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ↔ ((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 })) |
10 | incom 4146 | . . . . 5 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆)) |
12 | 11 | eqeq1d 2739 | . . 3 ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ↔ (𝑇 ∩ 𝑆) = { 0 })) |
13 | 9, 12 | anbi12d 631 | . 2 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ (((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑆) = { 0 }))) |
14 | lsmcntz.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
15 | lsmdisj.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
16 | 4, 2, 1, 14, 15 | lsmdisj2a 19368 | . 2 ⊢ (𝜑 → ((((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑆) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
17 | 13, 16 | bitrd 278 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∩ cin 3896 ⊆ wss 3897 {csn 4571 ‘cfv 6466 (class class class)co 7317 0gc0g 17227 SubGrpcsubg 18825 Cntzccntz 18997 LSSumclsm 19315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-0g 17229 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-grp 18656 df-minusg 18657 df-subg 18828 df-cntz 18999 df-lsm 19317 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |