Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmdisj3a | Structured version Visualization version GIF version |
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
lsmdisj3b.z | ⊢ 𝑍 = (Cntz‘𝐺) |
lsmdisj3a.2 | ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) |
Ref | Expression |
---|---|
lsmdisj3a | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | lsmcntz.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | lsmdisj3a.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) | |
4 | lsmcntz.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝐺) | |
5 | lsmdisj3b.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝐺) | |
6 | 4, 5 | lsmcom2 19288 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝑆 ⊕ 𝑇) = (𝑇 ⊕ 𝑆)) |
7 | 1, 2, 3, 6 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝑆 ⊕ 𝑇) = (𝑇 ⊕ 𝑆)) |
8 | 7 | ineq1d 4148 | . . . 4 ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = ((𝑇 ⊕ 𝑆) ∩ 𝑈)) |
9 | 8 | eqeq1d 2735 | . . 3 ⊢ (𝜑 → (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ↔ ((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 })) |
10 | incom 4138 | . . . . 5 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆)) |
12 | 11 | eqeq1d 2735 | . . 3 ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ↔ (𝑇 ∩ 𝑆) = { 0 })) |
13 | 9, 12 | anbi12d 630 | . 2 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ (((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑆) = { 0 }))) |
14 | lsmcntz.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
15 | lsmdisj.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
16 | 4, 2, 1, 14, 15 | lsmdisj2a 19321 | . 2 ⊢ (𝜑 → ((((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑆) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
17 | 13, 16 | bitrd 278 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∩ cin 3888 ⊆ wss 3889 {csn 4564 ‘cfv 6447 (class class class)co 7295 0gc0g 17178 SubGrpcsubg 18777 Cntzccntz 18949 LSSumclsm 19267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-0g 17180 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-submnd 18459 df-grp 18608 df-minusg 18609 df-subg 18780 df-cntz 18951 df-lsm 19269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |