| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmdisj3a | Structured version Visualization version GIF version | ||
| Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
| lsmdisj3b.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| lsmdisj3a.2 | ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) |
| Ref | Expression |
|---|---|
| lsmdisj3a | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | lsmcntz.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 3 | lsmdisj3a.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑇)) | |
| 4 | lsmcntz.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝐺) | |
| 5 | lsmdisj3b.z | . . . . . . 7 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 6 | 4, 5 | lsmcom2 19592 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝑆 ⊕ 𝑇) = (𝑇 ⊕ 𝑆)) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑆 ⊕ 𝑇) = (𝑇 ⊕ 𝑆)) |
| 8 | 7 | ineq1d 4185 | . . . 4 ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = ((𝑇 ⊕ 𝑆) ∩ 𝑈)) |
| 9 | 8 | eqeq1d 2732 | . . 3 ⊢ (𝜑 → (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ↔ ((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 })) |
| 10 | incom 4175 | . . . . 5 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆)) |
| 12 | 11 | eqeq1d 2732 | . . 3 ⊢ (𝜑 → ((𝑆 ∩ 𝑇) = { 0 } ↔ (𝑇 ∩ 𝑆) = { 0 })) |
| 13 | 9, 12 | anbi12d 632 | . 2 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ (((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑆) = { 0 }))) |
| 14 | lsmcntz.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 15 | lsmdisj.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 16 | 4, 2, 1, 14, 15 | lsmdisj2a 19624 | . 2 ⊢ (𝜑 → ((((𝑇 ⊕ 𝑆) ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑆) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
| 17 | 13, 16 | bitrd 279 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 0gc0g 17409 SubGrpcsubg 19059 Cntzccntz 19254 LSSumclsm 19571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-subg 19062 df-cntz 19256 df-lsm 19573 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |