MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj3a Structured version   Visualization version   GIF version

Theorem lsmdisj3a 19370
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisj3b.z 𝑍 = (Cntz‘𝐺)
lsmdisj3a.2 (𝜑𝑆 ⊆ (𝑍𝑇))
Assertion
Ref Expression
lsmdisj3a (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 𝑈)) = { 0 } ∧ (𝑇𝑈) = { 0 })))

Proof of Theorem lsmdisj3a
StepHypRef Expression
1 lsmcntz.s . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 lsmcntz.t . . . . . 6 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3 lsmdisj3a.2 . . . . . 6 (𝜑𝑆 ⊆ (𝑍𝑇))
4 lsmcntz.p . . . . . . 7 = (LSSum‘𝐺)
5 lsmdisj3b.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
64, 5lsmcom2 19336 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ (𝑍𝑇)) → (𝑆 𝑇) = (𝑇 𝑆))
71, 2, 3, 6syl3anc 1370 . . . . 5 (𝜑 → (𝑆 𝑇) = (𝑇 𝑆))
87ineq1d 4156 . . . 4 (𝜑 → ((𝑆 𝑇) ∩ 𝑈) = ((𝑇 𝑆) ∩ 𝑈))
98eqeq1d 2739 . . 3 (𝜑 → (((𝑆 𝑇) ∩ 𝑈) = { 0 } ↔ ((𝑇 𝑆) ∩ 𝑈) = { 0 }))
10 incom 4146 . . . . 5 (𝑆𝑇) = (𝑇𝑆)
1110a1i 11 . . . 4 (𝜑 → (𝑆𝑇) = (𝑇𝑆))
1211eqeq1d 2739 . . 3 (𝜑 → ((𝑆𝑇) = { 0 } ↔ (𝑇𝑆) = { 0 }))
139, 12anbi12d 631 . 2 (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ (((𝑇 𝑆) ∩ 𝑈) = { 0 } ∧ (𝑇𝑆) = { 0 })))
14 lsmcntz.u . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
15 lsmdisj.o . . 3 0 = (0g𝐺)
164, 2, 1, 14, 15lsmdisj2a 19368 . 2 (𝜑 → ((((𝑇 𝑆) ∩ 𝑈) = { 0 } ∧ (𝑇𝑆) = { 0 }) ↔ ((𝑆 ∩ (𝑇 𝑈)) = { 0 } ∧ (𝑇𝑈) = { 0 })))
1713, 16bitrd 278 1 (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑆 ∩ (𝑇 𝑈)) = { 0 } ∧ (𝑇𝑈) = { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  cin 3896  wss 3897  {csn 4571  cfv 6466  (class class class)co 7317  0gc0g 17227  SubGrpcsubg 18825  Cntzccntz 18997  LSSumclsm 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-0g 17229  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-submnd 18508  df-grp 18656  df-minusg 18657  df-subg 18828  df-cntz 18999  df-lsm 19317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator